
myBeNext API documentation

BeNext B.V.

May 27, 2025

Contents

1 Basic API information 3
1.1 API Terms of service . 3
1.2 URL construction . 3
1.3 Authentication . 3
1.4 Accessing and manipulating resources . 6
1.5 Common & custom request headers . 7
1.6 Cross-site requests . 8
1.7 Errors . 8
1.8 Timestamps and timezone information . 9
1.9 API structure . 9

2 Multi factor authentication 11
2.1 Introduction to MFA . 11
2.2 Totpdevices . 13
2.3 Mfaauthenticate . 15

3 Account information 16
3.1 Accounts . 16
3.2 Addresses . 19
3.3 Projects . 21
3.4 Organizations . 23
3.5 Lifestyles . 25
3.6 Scenes . 28
3.7 Files . 30

4 General product information 32
4.1 Producttypes . 32
4.2 Products . 34
4.3 Datatypes . 37
4.4 Properties . 41
4.5 Mainmeters . 45
4.6 Tariffs . 47
4.7 Climatecontrollers . 49

5 Sensor data & availability 52
5.1 Availabilities . 52
5.2 Historyentries . 54
5.3 Energyentries . 56
5.4 Energyentrytotals . 58

6 Device linking & configuration 60
6.1 Gateways . 60
6.2 Settings . 62
6.3 Nodes . 64
6.4 Propertymappings . 67
6.5 Installation . 70
6.6 Deinstallation . 73
6.7 Synchronize . 76
6.8 Pendingdatas . 78

7 Energy asset reporting 81
7.1 Energyassetcategories . 81
7.2 Energyassets . 85
7.3 Energyassetproperties . 87

1

7.4 Energyassetbundles . 89
7.5 Energyassetbundletotals . 91
7.6 Energyassetaggregates . 93
7.7 Heatpumpcops . 96
7.8 Heatpumpcoptotals . 98

8 Problem detection and resolution 100
8.1 Failuretypes . 100
8.2 Failures . 102

9 User interface 105
9.1 Tiles . 105

10 Changelog 109
10.1 Release 1.59 . 109
10.2 Release 1.57 — 2024-11-27 . 109
10.3 Release 1.56 — 2024-07-31 . 109
10.4 Release 1.55 — 2024-04-24 . 109
10.5 Release 1.54 — 2023-12-13 . 109
10.6 Release 1.53 — 2023-09-13 . 109
10.7 Release 1.51 — 2023-04-19 . 109
10.8 Release 1.50 — 2023-02-08 . 109
10.9 Release 1.49.3 — 2023-01-24 . 110
10.10Release 1.49 — 2022-12-07 . 110
10.11Release 1.48 — 2022-08-18 . 110
10.12Release 1.47.3 — 2022-07-18 . 110
10.13Release 1.47 – 2022-06-14 . 110
10.14Release 1.45.3 – 2022-02-23 . 110
10.15Release 1.44 – 2021-07-07 . 110
10.16Release 1.43 – 2021-04-07 . 110
10.17Release 1.42 – 2020-11-10 . 111
10.18Release 1.40 – 2020-04-08 . 111
10.19Release 1.39 – 2020-02-07 . 111
10.20Release 1.38 – 2019-10-10 . 111
10.21Release 1.37 – 2019-07-17 . 111

2

1 | Basic API information

1.1 API Terms of service

The API terms of service are currently available in Dutch only. If you use the API you will automat-
ically agree with the terms of service of the API. The latest version of the terms of service can be
found here: api.benext.eu/documentation/gebruiksovereenkomst.pdf.

1.2 URL construction

All URLs in this documentation do not include the base domain benext.eu.
So when you see an URL like this:

/login/api/v1/accounts

The full URL is:

https://benext.eu/login/api/v1/accounts

1.3 Authentication

Authentication with the API is done through one of five options: Bearer token authentication,
HTTP Basic authentication, HTTP Apikey authorization, HTTP HMAC authorization or session au-
thentication.
If authentication is required for an API-call and the request doesn’t contain any authentication in-
formation a 401 UNAUTHORIZED is returned with a request for Basic authentication. If your header
or query parameter is malformed you will receive a 400 BAD REQUEST.
Check the returned WWW-Authenticate header for the cause of the 401.

1.3.1 Bearer token

With Bearer token authentication, you request a token that you can use in the headers of each
API request for authentication. This is the preferred method of authentication as it has a lower
latency over Basic and API-key authentication.
It works by sending a POST with either Basic, API-key or Bearer authentication (further explained
below) to the token URL. The JSON response contains the token, expire time, expire date (UTC
timestamp), whether MFA is required for any follow up api requests, account and address infor-
mation. The token can then be used in the header in any follow-up api call. The token is valid for
3600 seconds after which a new token will have to be requested.
Authenticating with token authentication on the token URL itself will not generate a new token,
but it will return an updated expire time and expire date.
If mfa in the response is true then the follow-up API requests anMFA token header. See our Multi
Factor Authentication chapter.

Only the Authorization header is allowed for this token authentication endpoint.
Query parameters like ?apikey=<x> are not allowed.

1.3.1.1 Examples

Successful request (no MFA enabled)

POST /login/api/v1/authenticate/bearer

Headers (one of the following options):

3

http://api.benext.eu/documentation/gebruiksovereenkomst.pdf

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Authorization: Apikey AVerySecretKeyALkjlfhaskjd

Authorization: Bearer fajsdlfjhsdhghsdfghaskdfdsaks

Response:

200 OK
{

"token": "fajsdlfjhsdhghsdfghaskdfdsaks",
"mfa": false,
"expiredate": 1739461462,
"expiretime": 3600,
"account": {

"account": 1,
"addons": [

"basic",
"sp_basic"

],
"email": "no-reply@benext.eu",
"firstname": "Demo",
"language": "nl",
"lastname": "Account",
"username": "demo"

},
"address": {

"account": 1,
"address": 22,
"city": "Amsterdam",
"country": "Netherlands",
"postal_code": "1031HN",
"street_address": "Asterweg 20L1"

}
}

Follow-up request:

GET /login/api/v1/accounts/
Header: Authorization: Bearer fajsdlfjhsdhghsdfghaskdfdsaks

200 OK
{

"account": 1,
"addons": [

"basic",
"sp_basic"

],
"email": "no-reply@benext.eu",
"firstname": "Demo",
"language": "nl",
"lastname": "Account",
"username": "demo"

}

Successful request (with MFA enabled) With MFA enabled, due to privacy, the account and
address information have been limited and left out respectively.

POST /login/api/v1/authenticate/bearer

4

Headers:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Response:

200 OK
{

"token": "fajsdlfjhsdhghsdfghaskdfdsaks",
"mfa": true,
"expiredate": 1739461462,
"expiretime": 3600,
"account": {

"account": 1,
},
"address": null

}

1.3.1.2 Unsuccessful login: Invalid API-key

POST /login/api/v1/authenticate/bearer
Header: Authorization: Apikey invalidapikey

Response:

401 UNAUTHORIZED
Header: WWW-Authenticate: Apikey
Body:
{

"token": null,
"error": "Could not authenticate with the supplied method",
"resource": "authentication"

}

1.3.1.3 Unsuccessful login: Malformed header

POST /login/api/v1/authenticate/bearer
Header: Authorization: Apikeycorrectapikeywrongformat

Response:

400 BAD REQUEST
Header: WWW-Authenticate: Apikey
Body:
{

"token": null,
"error": "Authorization header doesn't match required format",
"resource": "authentication"

}

1.3.2 Basic

Basic authentication can be used to authenticate as a single user. This form of authentication can
be used to control most parts of the system and is convenient for apps. By adding basic authen-
tication to every request you can avoid receiving 401 errors or session timeouts. In order to au-
thenticate a usermust pass an AuthorizationHTTP-header. The authorization key is constructed
as follows:

1. Username and password are combined into a string “username:password”
2. The resulting string is then encoded using the RFC2045-MIME variant of Base64, except not

limited to 76 char/line

5

3. The authorization method and a space i.e. “Basic” is then put before the encoded string.

An example of this header is: Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
An in-depth explanation of Basic authentication can be found here: tools.ietf.org/html/rfc2617
and here en.wikipedia.org/wiki/Basic_access_authentication.
Authentication can only be done for 1 user at a time. Using Basic authentication a user will only
have access to their account. If access to multiple accounts is required an API-key is needed.

1.3.3 API-key

An API-key is required to manage multiple accounts without having access to their username /
password. The API-key can either be passed as query parameter: apikey=<api_key> or in the
Authorization header: Authorization: Apikey <api_key>.
For the time being API-keys will have to be requested by e-mail.

Please note that the apikey query parameter is deprecated and will be phased out in
the near future.

1.3.4 HMAC

An HMAC-token can be used to provide credentials for a user linked to your API-key without shar-
ing the user credentials or your API-key. This is useful for external services such as IFTTT for which
using your API-key might be a security issue.
An HMAC authentication token can be constructed using an API-key. The HMAC can either be
passedasqueryparameter: hmac=<hmac>&hmac_account_id=<account_id>or in theAuthorization
header: Authorization: HMAC <hmac>,account_id=<account_id>.
Theaccount_id shouldbe theaccount forwhich youwish toprovide theAPI-key,NOT theaccount_id
associated with the API-key.

1.3.5 Session authentication

Session authentication is mostly useful for front-end frameworks using javascript. By authenticat-
ing once and storing the result cookies the API can be queried without storing the username or
password. The following example show how to request a session-token using json:

1. Construct the post body: { "username": <username>, "password": <password> }
2. Send the post to: /login/api/v1/authenticate/
3. Store the following cookies: 2myhomesession and csrftoken
4. Add the stored cookies to any following requests

It is possible to construct the post-body using the content-types: application/json, text/plain
or x-www-form-urlencoded.

1.3.6 Multi Factor Authentication (MFA)

The BeNext API supportsMulti Factor Authentication (MFA). MFA can be enabled per account and
only works with Basic Authentication. A complete description on MFA is given at the Multi Factor
Authentication chapter.

1.4 Accessing and manipulating resources

Accessing and manipulating resources follow a fixed pattern. Depending on the HTTP request
method each request is handled differently. These different ways of handling are described as
follows:

GET View 1 or more resource(s)
POST Create a new instance of a resource
PUT Update all or some values of the resource
DELETE Remove a resource

6

http://tools.ietf.org/html/rfc2617
http://en.wikipedia.org/wiki/Basic_access_authentication

If an API endpoint does not support the HTTP request method, it will return 405 Method Not
Allowed.
Multiple resources can be requested by requesting the base-url of the resources. This returns the
entire list of applicable resources. A single resource can be requested by appending the resource
id to the url. For example: /products/ requests all products, while /products/1/ requests 1
product with the id 1.
Multiple resources can be requested by using query parameter filters. These are described per
resource and vary depending on the resources. In general it’s always possible to request multiple
resources by id by passing de singular resource name followed by _id as query parameter with
as value a comma-separated list of ids. For example: /products/?product_id=1,5,8will request
the resources 1, 5 and 8.

1.4.1 Resource bulk creation

Some resources can be created in bulk. This is more efficient than using separate request because
it reduces HTTP and database overhead. If a resource allows bulk creation you can send a list of
resources instead of a singular resource as POST-body. Bulk creations are performed as an atomic
action. If the response code is not 2XX no resources will have been created.
The responsewill consist of separate responses for each resource. Possible output responses are:

If the resource is created The response object will contain the status code 201 and the cre-
ated resource

If an error occurs The response object will contain the relevant status code, message and
original request body.

If all individual responses have the same status code, this status code will be used for the entire
request status code. E.g. if all resources are created successfully a 201 CREATEDwill be returned.
If the response status codes are mixed, a 207 MULTISTATUS is returned.
If bulk creation is attempted for a resource that does not support bulk creation the resource will
return a 422 UNPROCESSABLE ENTITY.

1.5 Common & custom request headers

1.5.1 Accept-Encoding

It is recommended to send request to the API with an Accept-Encoding: gzip header. This will
make sure the response is compressed before it is returned to the requester. This reduces net-
work traffic and will (for larger requests) result in a faster transfer time. API calls can also be
performed with compression on the request body. If this is desirable, gzip the request body and
add a Content-Encoding: gzip header to the request.

1.5.2 Accept-Language

It is possible to request translated strings through the API using the Accept-Language header.
Where possible this will translate the API output to the requested language. If a request is made
using Basic or session authentication the output will automatically be translated to the language
selected by the authenticated user.

1.5.3 Accept-Format

It is possible to request a different format for the response output. The default for resource lists
is an object wrapped list. This is to ensure proper JSON handling in most edge cases. To allow for
easier handling it is possible to just return the list.
To (explicitly) request dictionary format, pass Accept-Format: object as header. This is not re-
quired, asobjectwrapping is thedefault. To request aplain listwith resources, passAccept-Format:
list as header.
If an accept-format request is invalid or unknown a 406 NOT ACCEPTABLE may be returned.

7

1.5.4 Range

It is possible to do pagination with the Range header. This API implementation a custom range-
specifier called resourceids. If a resource accepts a resourceids range this will be noted in the
request headers. This range specifier can be used to (efficiently) request part of a resource list.
The semantic checking for this header is limited, so invalid header will result in empty requests or
request that are not filter. The format is as follows:

Range: resourceids <start>-<end>/<count>

Both the count and end specifier are optional. When omitting the count specifier, do not used
the /-separator. Valid value are:

start Any integer number or *
end Any integer number
count Any integer number

A valid range request will filter out all resources smaller than start and larger than end. This
operation is inclusive, we both start and end will be included in the request. count will limit
the request to at most that many resource. Any range-limited resource will always return a 206
PARTIAL CONTENT response.

1.6 Cross-site requests

The API has support for cross-site requests using JSONP-style wrapped JSON data. If the optional
query parameter jsonp=<fn_name> is passed with a specified function name, the JSON data will
be returned as data wrapped in a function with the specified name. The Content-Type of this
data will be application/javascript. This can be used to load data from the API from different
origins.

1.7 Errors

If a call to the API results in an error, these will be passed in a JSON object. These objects contain
a textual description of the problem and an error code. Where possible an appropriate http error
code will be used. An example of an error that can be returned is found below:

404 NOT FOUND
{

"error": "account not found",
"resource": "account",
"code": 12

}

1.7.1 HTTP status codes

The following HTTP status response codes can be returned when an error has occurred, here is
what they mean:

• 400: Generic client-side error. Check return message for more information.
• 401: Authentication error. The API endpoint requires authentication or incorrect authenti-
cation is given. Check the WWW-Authenticate header for the cause of the error.

• 403: Forbidden: You have no access to this resource.
• 404: Resource not found.
• 405: HTTP request method is not supported for this API endpoint.
• 422: The request is valid, but could not be processed. Check the returned errormessage for
more information.

• 429: The request has been rate limited. Please adjust your request frequency and try again
later.

• 500: Server-side error. Our team is on it!
• 501/503/504: The server is currently too busy to handle your request. Please try again later.

8

1.8 Timestamps and timezone information

The API has multiple resources which accept timestamp as field or as query parameter. Handling
these will always be done with respect to timezones. Anywhere a timestamp can be entered an
ISO-format timezone (e.g. +0300) can be appended.
Tomake sure the API always returns consistent data all timestamp are return in theUTC timezone.
This makes sure that the timeseries are always consistent no matter what. This also allow for the
usage of multiple timezones in requests. For example, it is possible to use 2 different timezones
in history-entry GETs.

1.9 API structure

The API has a large amount of distinct resourceswithmany interconnection. An attempt has been
made to make the names of resources and parameters as uniform and consistent as possible.
Because of the different types of resources in the API, there are different intended purposes of
the API. The explanations below try to provide insight in the structure of the API.

1.9.1 Sensor data analysis

The resources in the graph below focus on measured data from appliances and products. When
available, use energyassetcategories to determine the way data should be interpreted. These
categories contain useful info to determine the efficiency of installations and provide an unam-
biguous way to figure out what certain properties describe.
If the account is not described by an energyasset, producttypes and datatypes can be combined
with mainmeter resources to provide a basic insight in energy consumption.

All sensor data is available through the historyentries and energyentries. The distinction be-
tween these two is: historyentries contain rawsensordata, includinganyerroneousdatapoints.
energyentries are calculated values with corrected, interpolated values at a fixed 15 minute in-
terval for easypresentation. Theseenergyentriesare calculatedonly for cumulativeenergy/gas/water
usage related properties.

9

1.9.2 Fault detection

The following resources focus on detection anomalies in the data and wrongly configured en-
ergyassets. Combining this information with aggregates failures and grouping by project or
address allows fast insight in problem areas.
failures are automatically generated by the system and describe various fault conditions that
can occur.

1.9.3 Smart home usage

These resources are mainly intended to be used to install, uninstall, configure and control prod-
ucts inside a smart home. Resources such as lifestyle and scene allow for easy access to high-
level features.

10

2 | Multi factor authentication

2.1 Introduction to MFA

2.1.1 General

The BeNext API supports Multi Factor Authentication (MFA). We allow two factor authentication
(“2FA”)with a Time-basedOne TimePassword (TOTP). ThismethodofMFA is supported byGoogle
Authenticator, Microsoft Authenticate and many other similar apps.
For more information on this type of authentication, you can visit en.wikipedia.org/wiki/Time-
based_one-time_password.

2.1.2 Adding MFA support to requests

MFA works by adding an Mfa-Token header together with regular Basic authentication header to
every API-request. This Mfa-Token header will prove that a device has successfully gone through
the MFA process. If MFA is required for an API-call and the request does not contain a valid
Mfa-Token header, a 401 UNAUTHORIZED is returned with a request for MFA. Check the returned
WWW-Authenticate header for the cause of the 401.

2.1.3 Endpoints

We provide multiple endpoints to set up and maintain the devices for MFA. These endpoints are
described further in this chapter.

Totpkeys Here you are able to fetch a TOTP setup key to supply to your authenticator tool
(such as Google Authenticator).

Totpdevices Represents the device which has the authenticator tool that generates a 6-digit
Totp-Token. When authenticated with an Mfa-Token, this endpoint also supplies methods
to manage the TOTP devices on an account.

Mfaauthenticate This endpoint will authenticate the device with a Totp-Token. A success-
ful authentication will return an Mfa-Token which you can supply with every API request to
complete the MFA.

2.1.4 Restrictions

• MFA is enabled on a per-account basis.

• Basic or Bearer authentication is required to interact with any of these endpoints, no other
authentication method is supported.

• Access to anMFA enabled account through API-Key or HMAC authentication is allowedwith-
out an Mfa-Token. There is no session-based authentication support for any of the MFA-API
endpoints. ## Totpkeys The totpkey resource is used to generate a TOTP setup key for MFA

11

https://en.wikipedia.org/wiki/Time-based_one-time_password
https://en.wikipedia.org/wiki/Time-based_one-time_password

purposes. The “totpkey” can bemanually entered into an authenticator tool (such as Google
Authenticator) to generate a 6-digit Totp-Token. This Totp-Token can then be used to create
a TOTPDevice resource and handle any subsequent MFA-based requests.

• A totpkey is valid for 10 minutes after which you have to call the endpoint again.

• Only GET requests are allowed on this endpoint.

• Only Basic Authentication is allowed on this endpoint.

For more information on MFA please check out the introduction to this chapter.

2.1.5 Beta endpoint

This endpoint is still in it’s Beta stage. This means that the results from this endpointmight not be
as expected. All aspects might be subject to change in the future as well. To have beta features
enabled for you, please contact BeNext.

2.1.6 URL patterns

/login/api/v1/mfa/totp/key

2.1.6.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: totpkey.

2.1.7 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

2.1.7.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
totpkey Resource identifier

Output JSON

Resource = {
"totpkey": "OV3W4EJKPDJLKS3AOE7DPT7K2QS6I662"

}

12

2.2 Totpdevices

The totpdevice resource represents the device which has the authenticator tool that generates
a 6-digit Totp-Token needed for MFA. A new TOTP device for MFA can be created with the key
given by the Totpkeys endpoint. This device should then be activated by taking the “totptoken”
from a tool such as Google Authenticator. The token should be sent over a POST request as de-
scribed below. Without creating and activating a totpdevice, the user cannot authenticate using
the Mfaauthenticate endpoint.

• The user who has already created a TOTP device should authenticate with an MFA-Token to
be allowed create a new TOTP device.

• GET, PUT and DELETE requests are only allowed when using MFA.
• Only Basic Authentication is allowed on this endpoint.

For more information on MFA please check out the introduction to this chapter.

2.2.1 Beta endpoint

This endpoint is still in it’s Beta stage. This means that the results from this endpointmight not be
as expected. All aspects might be subject to change in the future as well. To have beta features
enabled for you, please contact BeNext.

2.2.2 URL patterns

/login/api/v1/mfa/totp/devices/
/login/api/v1/mfa/totp/devices/<totpdevice>/

2.2.2.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, name, totpdevice.

2.2.3 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

2.2.3.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
account Parent account identifier
name Device name
totpdevice Resource identifier

If filter queryparams are passed:
• A ResourceList containing those totpdevices will be returned
• If no totpdevices are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "totpdevices": [
{

"account": "1",
"name": "Phone 1",
"totpdevice": "5f822e81105461dbfb39f09a8cffbd11718f5b4c7b146d47206fe9bdb7c131a3"

},

13

{
"account": "1",
"name": "Tablet 1",
"totpdevice": "624dfa4b6501ab828c2acc5ef5c6c97a431f7b42cc85e11b8d5ad302d9327419"

}
] }

2.2.3.2 POST

A POST request will create a new totpdevice. The totpdevice will automatically be linked to the
API key. Any query parameters not required for creation will be ignored. A POST request with an
id will result in a 404 NOT FOUND error.

Required fields name, totptoken
Optional fields –

Creating a totpdevice is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"name": "Phone 1",
"totptoken": "123456"

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

2.2.3.3 PUT

APUT request is used to updatefields of a totpdevice. If a field is passed that cannot beupdated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields name

Updating a totpdevice is done by passing the values to be updated as JSON data with a PUT. An
example of the PUT body is

{
"name": "Phone 2"

}

A PUT request with filtering query parameters or without an totpdevice idWILL update multiple
totpdevices. It is NOT recommend to send a PUT request without an totpdevice id or filtering
query parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

2.2.3.4 DELETE

ADELETE request is used to remove a totpdevice. If the resource does not exist a 404NOTFOUND
is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an totpdevice id WILL delete multiple tot-
pdevices. It isNOT recommend send a DELETE request without an totpdevice id or filtering query
parameters.

14

2.3 Mfaauthenticate

The mfaauthenticate resource is used to generate an Mfa-Token to be used with MFA. If the ac-
count you are authenticating as has MFA enabled, an Mfa-Token should be sent in the header
of every request to access API endpoints. To be able to get an Mfa-Token, a “totptoken” should
be provided as described in the Totpkeys. The resource checks the “totptoken” and returns the
“mfatoken” if it is valid. A valid “totptoken” should be obtained from an authenticator tool.

• Only POST requests are allowed on this endpoint.
• Only Basic Authentication is allowed on this endpoint.

For more information on MFA please check out the introduction to this chapter.

2.3.1 Beta endpoint

This endpoint is still in it’s Beta stage. This means that the results from this endpointmight not be
as expected. All aspects might be subject to change in the future as well. To have beta features
enabled for you, please contact BeNext.

2.3.2 URL patterns

/login/api/v1/mfa/authenticate/

2.3.2.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: mfatoken.

2.3.3 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

2.3.3.1 POST

A POST request will create a new mfaauthenticate. The mfaauthenticate will automatically be
linked to the API key. Any query parameters not required for creation will be ignored. A POST
request with an id will result in a 404 NOT FOUND error.

Required fields totptoken
Optional fields –

Creating a mfaauthenticate is done by passing the resource as JSON data with POST. An example
of the POST body is

{
"totptoken": "123456"

}

If the resource is created successfully a 201 CREATED http code will be returned, along the fol-
lowing resource body:

Resource = {
"mfatoken": "ymbbrjg49tl1qu2p8rty3lj5x22ggztb"

}

15

3 | Account information

3.1 Accounts

The account resource allows for the looking up and changing of account information. Using an
API-key it is also possible to create accounts.

3.1.1 URL patterns

/login/api/v1/accounts/
/login/api/v1/accounts/1/

3.1.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, addons, email, firstname, language, lastname, reseller, username.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

3.1.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.1.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Resource identifier
addons List of all active add-ons enabled for user
email Email for the account, required for password resets
firstname First name for the account
language Preferred language selected by user
lastname Last name for the account
reseller Reseller code for the account
username Username for the account, used to log in. Max. 30 characters

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that account doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those accounts will be returned
• If no accounts are relevant or selected, an empty list will be returned.

16

Output JSON

Resource = {
"account": 1,
"addons": [],
"email": "no-reply@benext.eu",
"firstname": "Demo",
"language": "nl",
"lastname": "Account",
"reseller": "demo",
"username": "demo"

}

ResourceList = { "accounts": [
{

"account": 1,
"addons": [],
"email": "no-reply@benext.eu",
"firstname": "Demo",
"language": "nl",
"lastname": "Account",
"reseller": "demo",
"username": "demo"

}
] }

3.1.2.2 POST

A POST request will create a new account. The account will automatically be linked to the API key.
Any query parameters not required for creation will be ignored. A POST request with an id will
result in a 404 NOT FOUND error.

Required fields username, password, email, firstname, lastname
Optional fields language

Creating an account is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"username": "jdoe",
"firstname": "John",
"lastname": "Doe",
"email": "johndoe@example.com",
"password": "password123"

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

3.1.2.3 PUT

A PUT request is used to update fields of a account. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields email, firstname, lastname, language, password

Updating an account is done by passing the values to be updated as JSON data with a PUT. An
example of the PUT body is

{
"email": "new_email@gmail.com",

17

"firstname": "New_firstname",
"lastname": "New_lastname"

}

A PUT request with filtering query parameters or without an account id WILL update multiple
accounts. It is NOT recommend to send a PUT request without an account id or filtering query
parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

18

3.2 Addresses

Describes the address info for an account, if available. All values except account and addressMAY
be empty ("") or null.

3.2.1 URL patterns

/login/api/v1/addresses/
/login/api/v1/addresses/229/
/login/api/v1/accounts/682/addresses/
/login/api/v1/accounts/682/addresses/229/

3.2.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, address, city, country, postal_code, street_address.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

address_id Accepts a comma-separated list
address_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

3.2.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.2.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
account Parent account identifier
address Resource identifier
city City
country Country name
postal_code Postal Code
street_address Street address

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that address doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those addresses will be returned
• If no addresses are relevant or selected, an empty list will be returned.

19

Output JSON

Resource = {
"account": 682,
"address": 229,
"city": "Amsterdam",
"country": "Netherlands",
"postal_code": "1031HN",
"street_address": "Asterweg 20L1"

}

ResourceList = { "addresses": [
{

"account": 682,
"address": 229,
"city": "Amsterdam",
"country": "Netherlands",
"postal_code": "1031HN",
"street_address": "Asterweg 20L1"

}
] }

20

3.3 Projects

The project resource allows grouping of different accounts into projects.

3.3.1 URL patterns

/login/api/v1/projects/
/login/api/v1/projects/6/
/login/api/v1/accounts/4/projects/
/login/api/v1/accounts/4/projects/6/

3.3.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: accounts, name, organizations, project.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

project_id Accepts a comma-separated list
project_name Lookups areNOT case sensitive. Complex lookups are possible using the % and
_ symbol. The %-symbol match any character for any amount. The _-symbol matches any
character once. This syntax matches normal LIKE lookups in SQL.

3.3.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.3.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

accounts Lists accounts linked to this project
name Name of the project
organizations List of organizations linked to this project
project Resource identifier

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that project doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those projects will be returned
• If no projects are relevant or selected, an empty list will be returned.

Output JSON

21

Resource = {
"account": [

1,
5,
6

],
"name": "Testproject",
"organizations": [

1
],
"project": 6

}

ResourceList = { "projects": [
{

"accounts": [
1,
5,
6

],
"name": "Testproject",
"organizations": [

1
],
"project": 6

},
{

"accounts": [
5

],
"name": "DemoNomProject",
"organizations": [

2
],
"project": 5

}
] }

3.3.2.2 PUT

A PUT request is used to update fields of a project. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields name

Updating a project is done by passing the values to be updated as JSON data with a PUT. An ex-
ample of the PUT body is

{
"name": "New Project"

}

A PUT request with filtering query parameters or without an project id WILL update multiple
projects. It is NOT recommend to send a PUT request without an project id or filtering query
parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

22

3.4 Organizations

The organization resource provides contact information for companies and organizations associ-
ated with projects.

3.4.1 URL patterns

/login/api/v1/organizations/
/login/api/v1/organizations/1/
/login/api/v1/accounts/4/organizations/
/login/api/v1/accounts/4/organizations/1/

3.4.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: city, email, logo, name, organization, phone, street, website.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

organization_id Accepts a comma-separated list

3.4.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.4.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
city City where organization is located,MAY be null
email Contact email address for general inquiry,MAY be null
logo Logo associated with organization,MAY be null
name Printable name of the organization,MAY contain UTF-8 and/or special characters
organization Resource identifier
phone Customer service phone number,MAY be null
street Street address where organization is located,MAY be null
website Website of the organization,MAY be null

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that organization doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those organizations will be returned
• If no organizations are relevant or selected, an empty list will be returned.

Output JSON

23

Resource = {
"city": "Amsterdam",
"email": "info@benext.eu",
"logo": null,
"name": "BeNext B.V.",
"organization": 1,
"phone": null,
"street": "Asterweg 20L1",
"website": "https://www.benext.eu"

}

ResourceList = { "organizations": [
{

"city": "Amsterdam",
"email": "info@benext.eu",
"logo": null,
"name": "BeNext B.V.",
"organization": 1,
"phone": null,
"street": "Asterweg 20L1",
"website": "https://www.benext.eu"

}
] }

24

3.5 Lifestyles

The lifestyle resource lists the available lifestyles for an account anddenoteswhich is the currently
active lifestyle.
The id field will always be a number between 1 and 10 inclusive indicating the internal id of the
lifestyle. These map 1-to-1 on lifestyle names, although it is possible that lifestyle names change.
It is possible (and likely) that only some of the possible lifestyles are actually available.
Possible lifestyles include:

Home 1
Home 2 2
Home 3 3
Home 4 4
Away 5
Away 2 6
Away 3 7
Away 4 8
Sleep 9
Party 10

3.5.1 URL patterns

/login/api/v1/lifestyles/
/login/api/v1/lifestyles/2/
/login/api/v1/accounts/1/lifestyles/
/login/api/v1/accounts/1/lifestyles/2/

3.5.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, active, id, lifestyle, name.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

lifestyle_id Accepts a comma-separated list
active true or false
id number between 1 and 10, inclusive

3.5.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.5.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Parent account identifier
active Marks the currently active lifestyle
id Account-level unique id for lifestyle

25

lifestyle Resource identifier
name Name of lifestyle

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that lifestyle doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those lifestyles will be returned
• If no lifestyles are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"account": 1,
"active": false,
"id": 5,
"lifestyle": 2,
"name": "away"

}

ResourceList = { "lifestyles": [
{

"account": 1,
"active": true,
"id": 1,
"lifestyle": 1,
"name": "home"

},
{

"account": 1,
"active": false,
"id": 5,
"lifestyle": 2,
"name": "away"

},
{

"account": 1,
"active": false,
"id": 9,
"lifestyle": 3,
"name": "sleep"

}
] }

3.5.2.2 PUT

A PUT request is used to update fields of a lifestyle. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields active

Updating a lifestyle is done by passing the values to be updated as JSON data with a PUT. An
example of the PUT body is

{
"active": true

}

26

• The ONLY valid value for active is true.
• It is NOT possible to deactivate a lifestyle.
• If the value false is passed a 400 Bad Request will be returned.
• It is NOT possible to activatemultiple lifestyles at the same time. A PUT request onmultiple
resources will result in a 400 Bad Request.

A successful PUT request will return a 200 OK http code with an empty response body.

27

3.6 Scenes

The scene resource describes the required data to send local-api requests to trigger scene and
lists the available scenes by name.
It is currently not possible to request what products are changed by a scene but this is on the
feature list for addition to the scene resource.

3.6.1 URL patterns

/login/api/v1/scenes/
/login/api/v1/scenes/3/
/login/api/v1/accounts/1/scenes/
/login/api/v1/accounts/1/scenes/3/

3.6.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, code, name, scene.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

scene_id Accepts a comma-separated list
scene_name Lookups are NOT case sensitive. Complex lookups are possible using the % and
_ symbol. The %-symbol match any character for any amount. The _-symbol matches any
character once. This syntax matches normal LIKE lookups in SQL.

3.6.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.6.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Parent account identifier
code Code to trigger scene on the local API of the Gateway
name Name of scene
scene Resource identifier

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that scene doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those scenes will be returned
• If no scenes are relevant or selected, an empty list will be returned.

28

Output JSON

Resource = {
"account": 1,
"code": 75,
"name": "LightsOn",
"scene": 3

}

ResourceList = { "scenes": [
{

"account": 1,
"code": 75,
"name": "LightsOn",
"scene": 3

},
{

"account": 1,
"code": 76,
"name": "Film",
"scene": 4

}
] }

3.6.2.2 PUT

A PUT request is used to update fields of a scene. If a field is passed that cannot be updated, a 400
Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields name, trigger

Updating a scene is donebypassing the values tobeupdated as JSONdatawith aPUT. Anexample
of the PUT body is

{
"trigger": true

}

trigger: truewill activate the scene in the Gateway.
A PUT requestwith filtering query parameters orwithout an scene idWILLupdatemultiple scenes.
It is NOT recommend to send a PUT request without an scene id or filtering query parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

3.6.2.3 DELETE

A DELETE request is used to remove a scene. If the resource does not exist a 404 NOT FOUND is
returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an scene idWILL delete multiple scenes. It
is NOT recommend send a DELETE request without an scene id or filtering query parameters.

29

3.7 Files

Describes the contents and location of various files linked to an account. A title and description
provide some context to about the file. Additional tags allow for filtering and classification. Ex-
amples of tags may be: manual, promo, tandc.

3.7.1 URL patterns

/login/api/v1/files/
/login/api/v1/accounts/1/files/

3.7.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, desc, location, mimetype, tags, title.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

tags_contains Accepts a comma-separated list

3.7.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

3.7.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
account Parent account identifier
desc Description of the file,
location URL pointing to the file
mimetype Mime-type of the file
tags Tags associated with the image
title Title of file, intended for printing and display

If filter queryparams are passed:
• A ResourceList containing those files will be returned
• If no files are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "files": [
{

"account": 1,
"description": "Manual for explaining our NOM-service",
"location": "https://s3-eu-west-1.amazonaws.com/cdn-benext/static/nom_files/manuals/BeNext_NOM_Handleiding_V1.pdf",
"tags": [

"manual",
"nom"

],
"title": "NOM/EPV handleiding",

30

"type": "application/pdf"
},
{

"account": 1,
"description": "The BeNext Smart Home website",
"location": "https://www.benext.eu/",
"tags": [

"promo"
],
"title": "Homepage",
"type": "text/html"

}
] }

31

4 | General product information

4.1 Producttypes

The producttype resource describes the type of a product and the associated image. They also
contain information on the full name of the product andmetadata about how the product should
be used in the myBeNext interface.
If possible the correct producttype should be chosen over installing a product as a generic device.

4.1.1 URL patterns

/login/api/v1/producttypes/
/login/api/v1/producttypes/42/

4.1.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: addable, appearance, image, installable, manufacturer, name, producttype,
type.

climatecontroller Accepts a boolean value: true or false
producttype_id Accepts a comma-separated list

4.1.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

4.1.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

addable Indicates if this product can be added under normal circumstances
appearance Lists the possible appearance options for the producttype, always includes the
producttype itself

image Image of producttype
installable Indicates if this product can be installed using the API
manufacturer Gives the name of manufacturer, if available/applicable. May be null
name Name of producttype
producttype Resource identifier
type Specifies the typeofproduct, P forphysical product (thedevices), I for images (e.g. Boiler,
PC, lamp)

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that producttype doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those producttypes will be returned
• If no producttypes are relevant or selected, an empty list will be returned.

32

Output JSON

Resource = {
"appearance": [

42,
48,
143,
140

],
"image": "/static/uploads/peripheral_class_images/EnergySwitch.png",
"manufacturer": "BeNext",
"name": "Energy Switch",
"producttype": 42,
"type": "P"

}

ResourceList = { "producttypes": [
{

"appearance": [
52,
60,
111,
112

],
"image": "/static/uploads/peripheral_class_images/EnergySwitch.png",
"manufacturer": "BeNext",
"name": "Energy Switch",
"producttype": 42,
"type": "P"

}
] }

33

4.2 Products

The product resource lists the virtual products linked to an account. Each virtual product may be
linked to one physical product. These links are based on Manufacturer specific information listed
by the device.
Products also have sub-resources: properties. These can be used to determine functionality of a
device. The appearance of a product is linked to a producttype which contains the image for the
icon.

4.2.1 URL patterns

/login/api/v1/products/
/login/api/v1/products/29/
/login/api/v1/accounts/1/products/
/login/api/v1/accounts/1/products/29/

4.2.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, appearance, name, product, producttype.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

appearance_id Accepts a comma-separated list
node_null Returns uninstalled products. Accepts a boolean value: true or false.
product_id Accepts a comma-separated list
product_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

producttype_id Accepts a comma-separated list

4.2.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

4.2.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Parent account identifier
appearance Producttype resource id, describes the associated image
name Name of product, may be an empty string
product Resource identifier
producttype Producttype resource id, describes the physical product

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:

34

• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that product doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those products will be returned
• If no products are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"account": 1,
"appearance": 1,
"name": "Internet Gateway",
"product": 35,
"producttype": 1

}

ResourceList = { "products": [
{

"account": 1,
"appearance": 73,
"name": "Electricity Meter",
"product": 36,
"producttype": 73

},
{

"account": 1,
"appearance": 48,
"name": "Boiler",
"product": 41,
"producttype": 42

}
] }

4.2.2.2 POST

A POST request will create a new product. The product will automatically be linked to the API key.
Any query parameters not required for creation will be ignored. A POST request with an id will
result in a 404 NOT FOUND error.

Required fields producttype, account
Optional fields name, appearance

Creating a product is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"producttype": 1,
"account": 1

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

4.2.2.3 PUT

A PUT request is used to update fields of a product. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields name, appearance

35

Updating a product is done by passing the values to be updated as JSON data with a PUT. An
example of the PUT body is

{
"name": "Boiler",
"appearance": 53

}

A PUT request with filtering query parameters or without an product id WILL update multiple
products. It is NOT recommend to send a PUT request without an product id or filtering query
parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

36

4.3 Datatypes

The datatype resource describes how values should be displayed and handled. The functionality
of a property CAN and SHOULD be determined by looking at the datatype of the property.
If a property value has a specific suffix, this should be used to correctly display the value. The
property resource is described by the following value types:

Type Meaning

boolean A boolean value will have 2 choices, described by min and max. The respective
min_conv and max_conv values should be used to display which one is active.
As a rule, the min value will be an inactive state.

choice The value can be 1 of the keys listed in the choices field. Values should be
displayed using the values from the choices field.

integer An integer value with a min, max and step argument for usage in slider and
spinboxes. Does NOT allow decimal values.

float A floating point value with a min, max and step argument for usage in
slider and spinboxes. Does allow decimal values.

composite These valuesMAY be composed of 2 separate integer values, divided by a
comma (e.g. 3,FF). The first part will be an integer, the second part a
hexadecimal encoded integer.

custom Parsing and handling this type of property requires custom code. For
implementation and support contact the Api-maintainer.

4.3.1 Commonly used datatypes

Also provided below is are a few lists of commonly used datatypes for properties with defining
details:

4.3.1.1 Datatypes usable with energyentry resource

Id Name Suffix Description

39 Energy_kWh kWh Total consumed energy, used for mainmeters and products
50 EnergyReceived_kWh kWh Total returned energy, amount of energy feed back in to the power grid
63 EnergyProductionkWh kWh Total produced energy, amount of energy produced by e.g. solar panels
51 GasVolume m3 Total volume of natural gas
52 WaterVolume m3 Total volume of water
47 GigaJouleHeat GJ Total energy used for heating (either DHW or CH)
103 GigaJouleCool GJ Total energy used for cooling

4.3.1.2 Datatypes used of measuring and controlling temperature

Id Name Suffix Description

3 ScheduleOverride °C Setpoint logic for Heating Control, requires custom logic
67 Setpoint °C Thermostat setpoint for Z-wave devices (4 – 28 °C)
83 SecureSetpoint °C Setpoint for secure devices, allows only whole steps
12 Temperature °C Measured temperature, small range (0 – 50 °C)
102 HighTemperature °C Measured temperature, large range (-40 – 200 °C)

4.3.1.3 Datatypes used for control

37

Id Name Suffix Description

1 SwitchOrder1 — Same as Switch, but gets sorted first
9 Switch — Has 2 values, On and Off (255 and 0)
8 Dimmer % Dimmer, range 0 – 99 (100 gets converted to 99)
44 WindowDimmer % Dimmer, range 0 – 99 (100 gets converted to 99)
53 Basic % Accepts both Switch and dimmer command, 0 – 99, 255
55 Door lock — Has 2 values, Lock and Unlock (255 and 0)

4.3.1.4 Datatypes used for measure sensor data

Id Name Suffix Description

4 LightLux lx Measured light level in lux
10 Battery % Measured battery level in percentage
11 Lux % Measured light level in percentage
13 Movement — Has 2 values, Detected and Idle (255 and 0)
15 Contact — Has 2 values, Open and Closed (255 and 0)
18 Energy Watt Current amount of power used
54 Meter — Measured value, displayed as decimal
56 Sensor — Measured value, displayed as decimal
62 EnergyProductionWatt Watt Current amount of power produced (e.g. solar panels)
66 Flow m3/h Measured value, displayed as decimal
75 Humidity % Measured value in percentage
80 CO2 ppm Measured value, displayed as whole number
87 Ampere A Measured value, displayed as decimal
88 Voltage V Measured value, displayed as decimal
91 Velocity m/s Measured value, displayed as decimal
92 AirPressure kPa Measured value, displayed as decimal
96 BarPressure bar Measured value, displayed as decimal
97 RelativePressure bar Measured value, displayed as decimal
101 PowerWattage Watt Current amount of power (DC, only used in 1 product)

4.3.2 URL patterns

/login/api/v1/datatypes/
/login/api/v1/datatypes/12/

4.3.2.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: datatype, name, suffix, value.

datatype_id Accepts a comma-separated list

4.3.3 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

4.3.3.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

38

datatype Resource identifier
name Name of datatype
suffix Describes the suffix for the value, if applicable
value value description

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that datatype doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those datatypes will be returned
• If no datatypes are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"datatype": 15,
"name": "Contact",
"suffix": "",
"value": {

"cmp": [
"eq"

],
"max": 255,
"max_conv": "Opened",
"min": 0,
"min_conv": "Closed",
"type": "boolean"

}
}

ResourceList = { "datatypes": [
{

"datatype": 25,
"name": "Mode",
"suffix": "",
"value": {

"choice": {
"1": "Alarm",
"2": "Error",
"3": "Walk in",
"4": "Alert",
"5": "Wake up",
"6": "Doorbell"

},
"cmp": [

"eq"
],
"type": "choice"

}
},
{

"datatype": 27,
"name": "Duration",
"suffix": " sec",
"value": {

"cmp": [

39

"lt",
"eq",
"gt"

],
"max": 15,
"min": 0,
"step": 1,
"suffix": " sec",
"type": "integer"

}
}

] }

40

4.4 Properties

The property resource describes a single measurement source for a product. Any values received
for the same property always refer to the same sensor on the same product. Examples include
temperature andenergymeasurements. It’s possible for twoproperties fromoneproduct tohave
the same datatype. This simply means that it corresponds to two different sensors. e.g. inside
temperature and outside temperature

4.4.1 URL patterns

/login/api/v1/properties/
/login/api/v1/properties/222/
/login/api/v1/products/36/properties/
/login/api/v1/products/36/properties/222/
/login/api/v1/accounts/1/properties/
/login/api/v1/accounts/1/properties/222/
/login/api/v1/accounts/1/products/44/properties/
/login/api/v1/accounts/1/products/44/properties/222/

4.4.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: datatype, name, product, property, receiving, sending, updated, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

appearance_id Accepts a comma-separated list
datatype_id Accepts a comma-separated list
energy_data Returns only properties with an energy related datatype. Accepts a boolean
value: true or false.

node_null Returns uninstalled products. Accepts a boolean value: true or false.
product_id Accepts a comma-separated list
product_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

producttype_id Accepts a comma-separated list
property_id Accepts a comma-separated list
property_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

updated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

updated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

value_like Lookups are NOT case sensitive. Complex lookups are possible using the % and
_ symbol. The %-symbol match any character for any amount. The _-symbol matches any
character once. This syntax matches normal LIKE lookups in SQL.

41

4.4.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

4.4.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

datatype Datatype resource id, describes the value conversion
name Name of property, may NOT be empty
product Parent product identifier
property Resource identifier
receiving Indicates if a product can receive messages
sending Indicates if a product can send messages
updated Timestamp at which the latest value was received in ISO format, may also be null if
no value is ever received

value Current value

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that property doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those properties will be returned
• If no properties are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"datatype": 8,
"name": "Dimmer",
"product": 44,
"property": 222,
"receiving": true,
"sending": true,
"updated": "2018-04-20T14:53:00Z",
"value": "80"

}

ResourceList = { "properties": [
{

"datatype": 8,
"name": "Dimmer",
"product": 44,
"property": 222,
"receiving": true,
"sending": true,
"updated": "2018-04-20T14:53:00Z",
"value": "80"

},
{

"datatype": 18,
"name": "Energy",
"product": 44,
"property": 223,

42

"receiving": false,
"sending": true,
"updated": "2018-04-20T14:53:00Z",
"value": "150"

},
{

"datatype": 39,
"name": "kWh",
"product": 44,
"property": 224,
"receiving": false,
"sending": true,
"updated": "2018-04-20T14:53:00Z",
"value": "348.92"

}
] }

4.4.2.2 POST

A POST request will create a new property. The property will automatically be linked to the API
key. Any query parameters not required for creation will be ignored. A POST request with an id
will result in a 404 NOT FOUND error. This resource allows the bulk creation. To create multi-
ple resources in 1 request, send all resources in a list. Read the introduction chapter for more
information on this feature.

Required fields product, name, datatype, receiving, sending
Optional fields –

Creating a property is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"product": 15,
"name": "kWh",
"datatype": 39,
"receiving": false,
"sending": true

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

4.4.2.3 PUT

A PUT request is used to update fields of a property. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields name, datatype, receiving, sending, value

Updating a property is done by passing the values to be updated as JSON data with a PUT. An
example of the PUT body is

{
"name": "PV_kWh",
"datatype": 39,
"receiving": false,
"sending": false,
"value": "21"

}

43

A PUT request with filtering query parameters or without an property id WILL update multiple
properties. It is NOT recommend to send a PUT request without an property id or filtering query
parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

4.4.2.4 DELETE

A DELETE request is used to remove a property. If the resource does not exist a 404 NOT FOUND
is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an property id WILL delete multiple prop-
erties. It is NOT recommend send a DELETE request without an property id or filtering query
parameters.

44

4.5 Mainmeters

The mainmeter resource describes which properties combine to form the mainmeter for an ac-
count. Note that these propertyMAY be spread amongst multiple physical products.

4.5.1 URL patterns

/api/v1/mainmeters/
/api/v1/mainmeters/331/
/api/v1/accounts/682/mainmeters/
/api/v1/accounts/682/mainmeters/331/

4.5.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, mainmeter, property, tariff.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

mainmeter_id Accepts a comma-separated list

4.5.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

4.5.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
account Parent account identifier
mainmeter Resource identifier
property Parent property identifier
tariff Tariff identifier

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that mainmeter doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those mainmeters will be returned
• If no mainmeters are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"account": 682,
"mainmeter": 1,
"property": 3763,

45

"tariff": 331
}

ResourceList = { "mainmeters": [
{

"account": 682,
"mainmeter": 1,
"property": 3763,
"tariff": 331

}
] }

4.5.2.2 POST

A POST request will create a new mainmeter. The mainmeter will automatically be linked to the
API key. Any query parameters not required for creation will be ignored. A POST request with an
id will result in a 404 NOT FOUND error.

Required fields account, property, tariff
Optional fields –

Creating amainmeter is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"account": 682,
"property": 3763,
"tariff": 331

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

4.5.2.3 DELETE

ADELETE request is used to remove amainmeter. If the resourcedoes not exist a 404NOTFOUND
is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an mainmeter idWILL delete multiple main-
meters. It is NOT recommend send a DELETE request without an mainmeter id or filtering query
parameters.

46

4.6 Tariffs

The tariff resource provides information about the configured tariffs for the mainmeter. These
can be used to convert measured values into monetary values uniformly throughout the system.
Note that the symbols are purely graphic and provide no form of conversion.

4.6.1 URL patterns

/login/api/v1/tariffs/
/login/api/v1/tariffs/331/
/login/api/v1/accounts/682/tariffs/
/login/api/v1/accounts/682/tariffs/331/

4.6.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, symbol, tariff, type, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

tariff_id Accepts a comma-separated list
type_str Accepts a comma-separated list

4.6.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

4.6.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
account Parent account identifier
symbol Symbol for tariff
tariff Resource identifier
type Tariff type, possible options:
value Tariff per unit

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that tariff doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those tariffs will be returned
• If no tariffs are relevant or selected, an empty list will be returned.

Output JSON

47

Resource = {
"account": 682,
"symbol": "€",
"tariff": 331,
"type": "energy_normal",
"value": 0.12

}

ResourceList = { "tariffs": [
{

"account": 682,
"symbol": "€",
"tariff": 331,
"type": "energy_normal",
"value": 0.22

},
{

"account": 682,
"symbol": "€",
"tariff": 335,
"type": "gas",
"value": 0.65

},
{

"account": 682,
"symbol": "€",
"tariff": 336,
"type": "water",
"value": 0.006

}
] }

4.6.2.2 PUT

A PUT request is used to update fields of a tariff. If a field is passed that cannot be updated, a 400
Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields value, symbol

Updating a tariff is done by passing the values to be updated as JSONdatawith a PUT. An example
of the PUT body is

{
"value": 0.22,
"symbol": "$"

}

A PUT request with filtering query parameters or without an tariff idWILL update multiple tariffs.
It is NOT recommend to send a PUT request without an tariff id or filtering query parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

48

4.7 Climatecontrollers

The climate controller resource lists the virtual climate controllers linked to an account. Each vir-
tual climate controller may be linked to one physical product. These links are based on Manufac-
turer specific information listed by the device.
The resource has two fields which use arbitrary numbers to describe the status of the resource.
Schedule type:

Type Description

0 Following internal schedule
1 Temporary schedule override
2 Permanent schedule override

Valve status:

Status Description

0 Unknown
1 CH (Central Heating)
2 DHW (Domestic Hot Water)

4.7.1 URL patterns

/login/api/v1/climatecontrollers/
/login/api/v1/climatecontrollers/35/
/login/api/v1/accounts/1/climatecontrollers/
/login/api/v1/accounts/1/climatecontrollers/35/

4.7.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: controllable, datatype, formattedtemperature, heatdemand, mode, product,
scheduletype, setpoint, synchronised, temperature, valvestatus.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

appearance_id Accepts a comma-separated list
node_null Returns uninstalled products. Accepts a boolean value: true or false.
product_id Accepts a comma-separated list
product_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

producttype_id Accepts a comma-separated list

4.7.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

49

4.7.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
controllable Is the climate controller controllable. MAY be null
datatype Datatype resource identifier, describes the main setpoint
formattedtemperature The measured temperature of the controller in a formatted repre-
sentation. Can be an empty string

heatdemand Indicates if there is a demand for heat. MAY be null
mode Currently not implemented. Always null
product Product resource identifier
scheduletype The behaviour of the climate schedule, see the description for more details.
(Heating Control only)MAY be null

setpoint The wanted set point of the controller. MAY be null
synchronised The synchronisation status of the controller tells if the controller has had a
wake-up and has set the requested value

temperature The measured raw temperature value of the controller. MAY be null
valvestatus The status of the valve. MAY be null

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that product doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those climatecontrollers will be returned
• If no climatecontrollers are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"controllable": true,
"datatype": 73,
"formattedtemperature": "20.4 gr C",
"heatdemand": false,
"mode": null,
"product": 35,
"schedulteype": 0,
"setpoint": 20.5,
"synchronised": true,
"temperature": 20.4566,
"valvestatus": 0

}

ResourceList = { "climatecontrollers": [
{

"controllable": true,
"datatype": 73,
"formattedtemperature": "20.5 gr C",
"heatdemand": false,
"mode": null,
"product": 35,
"schedulteype": 0,
"setpoint": 20.5,
"synchronised": true,
"temperature": 20.4566,
"valvestatus": 0

},
{

50

"controllable": true,
"datatype": 73,
"formattedtemperature": "18.5 gr C",
"heatdemand": true,
"mode": null,
"product": 36,
"schedulteype": 0,
"setpoint": 12.0,
"synchronised": false,
"temperature": 18.4566,
"valvestatus": 0

}
] }

4.7.2.2 PUT

A PUT request is used to update fields of a product. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields setpoint, scheduletype

Updating a product is done by passing the values to be updated as JSON data with a PUT. An
example of the PUT body is

{
"setpoint": 18.5,
"scheduletype": 1

}

A PUT request with filtering query parameters or without an product id WILL update multiple
climatecontrollers. It is NOT recommend to send a PUT request without an product id or filtering
query parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

51

5 | Sensor data & availability

5.1 Availabilities

Provide information about when products were available and unavailable.

5.1.1 URL patterns

/login/api/v1/availability/

5.1.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: product, status, timestamp.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

begin ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

end ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

product_id Accepts a comma-separated list

5.1.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

5.1.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
product Product for which the status message is received
status Availability status report: available, retrying and unreachable
timestamp Time at which the status code was received, in ISO format

If filter queryparams are passed:
• A ResourceList containing those availabilities will be returned
• If no availabilities are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "availabilities": [
{

"product": 35670,
"status": "product_retry",
"timestamp": "2017-08-16T12:34:40.159Z"

},
{

52

"product": 35670,
"status": "product_avail",
"timestamp": "2017-08-16T12:34:50.039Z"

}
] }

53

5.2 Historyentries

History entries are the way raw data is stored in the myBeNext environment. They are linked to a
property and contain a timestamp and a “raw” value. This value is stored as a string because itmay
contain any form of data including, but not limited to: comma-separated values, floating points,
strings and Z-Wave specific metadata.

5.2.1 URL patterns

/login/api/v1/historyentries/<datetime>/<datetime>/
/login/api/v1/properties/historyentries/<datetime>/<datetime>/
/login/api/v1/properties/222/historyentries/<datetime>/<datetime>/
/login/api/v1/products/historyentries/<datetime>/<datetime>/
/login/api/v1/products/29/historyentries/<datetime>/<datetime>/

The <datetime> part of the URL consists of an ISO8601 extended timestamp. The following for-
mats are possible: YYYY-MM-DD, YYYY-MM-DDTHH:mm:ss, YYYY-MM-DDTHH:mm:ss(Z|+-1300).
The first timestamp describes the start of the query (inclusive), the second timestamp describes
the end of query (exclusive).

5.2.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: property, timestamp, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

aggregates Aggregates data based on the chosen aggregate on a per day base. Please note
that due to architectural limitations this only works for history data older than three days.
Options are: min, avg, max, cnt.

appearance_id Accepts a comma-separated list
datatype_id Accepts a comma-separated list
energy_data Returns only properties with an energy related datatype. Accepts a boolean
value: true or false.

node_null Returns uninstalled products. Accepts a boolean value: true or false.
product_id Accepts a comma-separated list
product_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

producttype_id Accepts a comma-separated list
property_id Accepts a comma-separated list
property_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

timezone IANA Tz database formatted timezone. Used for DST calculations and interpreta-
tion of timestamps in URL. Does NOT affect output.

updated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

updated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

54

value_like Lookups are NOT case sensitive. Complex lookups are possible using the % and
_ symbol. The %-symbol match any character for any amount. The _-symbol matches any
character once. This syntax matches normal LIKE lookups in SQL.

converted_value Returns anextra “converted_value”field,which contains the convertedvalue
from the raw value according to the correct datatype. Accepts a boolean value: true or
false.

5.2.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

5.2.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
property Parent property identifier
timestamp Timestamp for entry in ISO format
value Historic value at timestamp

If the end timestamp is smaller than or equal to the begin timestamp a 400 Bad Request error is
returned. If more than 32 days of data is requested a 400 Bad Request is returned.
If the amount of data is within the allowed 32 days, but the amount of data proves to be toomuch
for theAPI to serve, a 422Unprocessable Content error is returned. In this case, lower the number
of days and/or properties you are trying to fetch data for.
If filter queryparams are passed:

• A ResourceList containing those historyentries will be returned
• If no historyentries are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "historyentries": [
{

"property": 172,
"timestamp": "2015-03-30T00:00:00Z",
"value": 0

}
] }

55

5.3 Energyentries

Energy entries are the way aggregated data is stored in the myBeNext environment. They are
linked to a property and contain a timestamp and a floating point value. All values are normalized
to 15 minute interval values. These are NOT cumulative and can be summed to gain a total over
a period of time (e.g. sum all data from 2015-05-01 to 2015-05-05 to gain the total energy used
over this period).
These values can be aggregated a different resolution as listed below.
Energyentries are generated for the following list of datatypes: 39, 47, 50, 51, 52, 63, 103.

5.3.1 URL patterns

/login/api/v1/energyentries/<aggregate>/<datetime>/<datetime>/
/login/api/v1/properties/energyentries/<aggregate>/<datetime>/<datetime>/
/login/api/v1/properties/222/energyentries/<aggregate>/<datetime>/<datetime>/
/login/api/v1/products/energyentries/<aggregate>/<datetime>/<datetime>/
/login/api/v1/products/29/energyentries/<aggregate>/<datetime>/<datetime>/

The <aggregate> part of the URL indicates the resolution at which to aggregate. Possible options
are: minute, hour, day, week, month, quarter, year
The <datetime> part of the URL consists of an ISO8601 extended timestamp. The following for-
mats are possible: YYYY-MM-DD, YYYY-MM-DDTHH:mm:ss, YYYY-MM-DDTHH:mm:ss(Z|+-1300).
The first timestamp describes the start of the query (inclusive), the second timestamp describes
the end of query (exclusive).

5.3.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: property, timestamp, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

appearance_id Accepts a comma-separated list
datatype_id Accepts a comma-separated list
energy_data Returns only properties with an energy related datatype. Accepts a boolean
value: true or false.

node_null Returns uninstalled products. Accepts a boolean value: true or false.
product_id Accepts a comma-separated list
product_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

producttype_id Accepts a comma-separated list
property_id Accepts a comma-separated list
property_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

timezone IANA Tz database formatted timezone. Used for DST calculations and interpreta-
tion of timestamps in URL. Does NOT affect output.

updated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

56

updated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

value_like Lookups are NOT case sensitive. Complex lookups are possible using the % and
_ symbol. The %-symbol match any character for any amount. The _-symbol matches any
character once. This syntax matches normal LIKE lookups in SQL.

5.3.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

5.3.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
property Parent property identifier
timestamp Timestamp for entry in ISO format
value Aggregated value

If the end timestamp is smaller than or equal to the begin timestamp a 400 Bad Request error is
returned.
If filter queryparams are passed:

• A ResourceList containing those energyentries will be returned
• If no energyentries are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "energyentries": [
{

"property": 248,
"timestamp": "2015-03-30T00:00:00Z",
"value": 99.24999999999993

},
{

"property": 249,
"timestamp": "2015-03-30T00:00:00Z",
"value": 68.18848888888905

},
{

"property": 250,
"timestamp": "2015-03-30T00:00:00Z",
"value": 0.0030000000000001137

}
] }

57

5.4 Energyentrytotals

Energy entries are the way aggregated data is stored in the myBeNext environment. They are
linked to a property and contain a timestamp and a floating point value. All values are normalized
to 15 minute interval values. These are NOT cumulative and can be summed to gain a total over
a period of time (e.g. sum all data from 2015-05-01 to 2015-05-05 to gain the total energy used
over this period).
These values can be aggregated a different resolution as listed below.
Energyentries are generated for the following list of datatypes: 39, 47, 50, 51, 52, 63, 103.

5.4.1 URL patterns

/login/api/v1/energyentries/total/<datetime>/<datetime>/
/login/api/v1/properties/energyentries/total/<datetime>/<datetime>/
/login/api/v1/properties/222/energyentries/total/<datetime>/<datetime>/
/login/api/v1/products/energyentries/total/<datetime>/<datetime>/
/login/api/v1/products/29/energyentries/total/<datetime>/<datetime>/

Note that this url is similar to the normal energyentry resource. Themain difference between the
two is the output format, which for energyentrytotals does NOT include a timestamp.
The <datetime> part of the URL consists of an ISO8601 extended timestamp. The following for-
mats are possible: YYYY-MM-DD, YYYY-MM-DDTHH:mm:ss, YYYY-MM-DDTHH:mm:ss(Z|+-1300).
The first timestamp describes the start of the query (inclusive), the second timestamp describes
the end of query (exclusive).

5.4.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: property, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

appearance_id Accepts a comma-separated list
datatype_id Accepts a comma-separated list
energy_data Returns only properties with an energy related datatype. Accepts a boolean
value: true or false.

node_null Returns uninstalled products. Accepts a boolean value: true or false.
product_id Accepts a comma-separated list
product_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

producttype_id Accepts a comma-separated list
property_id Accepts a comma-separated list
property_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

updated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

updated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

58

value_like Lookups are NOT case sensitive. Complex lookups are possible using the % and
_ symbol. The %-symbol match any character for any amount. The _-symbol matches any
character once. This syntax matches normal LIKE lookups in SQL.

5.4.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

5.4.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
property Parent property identifier
value Aggregated value

If filter queryparams are passed:
• A ResourceList containing those energyentrytotals will be returned
• If no energyentrytotals are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "energyentrytotals": [
{

"property": 1103,
"value": 0.316

},
{

"property": 914,
"value": 11.6200000000092

},
{

"property": 1102,
"value": 0.168000000000001

}
] }

59

6 | Device linking & configuration

6.1 Gateways

TheGateway resource describes themetadata associatedwith the physical Gateway connected to
the account. Gateways can be installed using the serial number, a public ip address of the network
the Gateway is on or a mac address that is listed on the back of the Gateway.

6.1.1 URL patterns

/login/api/v1/gateways/
/login/api/v1/gateways/1/
/login/api/v1/accounts/13/gateways

6.1.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, firmware, gateway, public_ip, serial, status, status_time.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

gateway_id Accepts a comma-separated list

6.1.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.1.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Parent account identifier
firmware Describes whether the firmware can or should be updated
gateway Resource identifier
public_ip Public ip associated with the Gateway
serial Internal serial number of Gateway
status Gateway availability status (same as the status field of the Node resource)
status_time Status time

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that gateway doesn’t exist

If filter queryparams are passed:

60

• A ResourceList containing those gateways will be returned
• If no gateways are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"account": 1,
"firmware": "newest",
"gateway": 1,
"public_ip": "4.4.4.4",
"serial": "000042"

}

ResourceList = { "gateways": [
{

"account": 1,
"firmware": "newest",
"gateway": 1,
"public_ip": "4.4.4.4",
"serial": "000042"

}
] }

6.1.2.2 POST

A POST request will create a new gateway. The gateway will automatically be linked to the API
key. Any query parameters not required for creation will be ignored. A POST request with an id
will result in a 404 NOT FOUND error.

Required fields account
Optional fields serial, public_ip, exists

Creating a gateway is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"account": 1,
"serial": "000042"

}

When creating a gateway either a serial or public_ip is REQUIRED. If either one is NOT present
a 400 BAD REQUEST will be returned with a message explaining that 1 of them is required. In the
case that both are present the serialWILL take precedence over public_ip.
If the specified account doesn’t exist a 404 NOT FOUND will be raised, indicating the account
doesn’t exist. If the specified account already has a gateway installed, a 409 CONFLICT will be
returned.
If the provided serial is already in use, the api will return a 409 CONFLICT indicating the serial is
already in use.
The exists value specifies if the server should check whether the gateway specified already ex-
ists. This is useful if you want to want to verify if the gateway is connected to the server. If the
exists value is set to true the API will verify that 1 gateway is present for the provided serial
or public_ip. If no Gateway is connected with the server a 404 NOT FOUND http code will be re-
turned. If multiple gateways are found a 400 BAD REQUEST is returnedwith amessage explained
multiple gateways were found.
If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

61

6.2 Settings

The settings subresource is lists the possible settings you can send to a device. These are the same
settings that can be sent using the myBeNext-interface. The setting resource does NOT have a
unique identifier. Rather, the resource is a combination of the product resource and the name of
the setting.
The resource has a special value field which describes the possible values you can send to the
resource.
The contents of the value-field depends on the type that is passed in the value. The following
types are currently supported:

Type Meaning

choice 1 of the choices listed in the choices field may be passed in the value field.
multiplechoice 1 or more of the choices listed in the choices field may be passed in the

value field. These values should be passed as comma-separated list
char A character string may be passed in the value field. Optional min and/or

max fields may describe the minimum and/or maximum length that may be passed.
integer An integer may be passed in the value field. Optional min, max and

step field may describe the minimum and maximum values. The step field
describes the possible step from the minimum value up. The maximum value will
always be a valid value.

float A float may be passed in the value field. Optional min, max and
step field may describe the minimum and maximum values. The step field
describes the possible step from the minimum value up. The maximum value will
always be a valid value.

boolean A boolean true or falsemay be passed in the value field.
null A special type reserved for future support. Ignore any fields with this type.

6.2.1 URL patterns

/login/api/v1/settings/
/login/api/v1/products/108/settings/

6.2.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: name, product, value.

product_id Accepts a comma-separated list

6.2.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.2.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
name Name of setting
product Parent product identifier
value value description

If the URL is passed without id:
• The ResourceListwill be returned

62

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that setting doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those settings will be returned
• If no settings are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "settings": [
{

"name": "latitude",
"product": 108,
"value": {

"max": 90,
"min": -90,
"type": "float"

}
},
{

"name": "longtitude",
"product": 108,
"value": {

"max": 180,
"min": -180,
"type": "float"

}
},
{

"name": "dst",
"product": 108,
"value": {

"type": "boolean"
}

}
] }

6.2.2.2 POST

A POST request will create a new setting. The setting will automatically be linked to the API key.
Any query parameters not required for creation will be ignored. A POST request with an id will
result in a 404 NOT FOUND error.

Required fields product, name, value
Optional fields –

Creating a setting is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"product": 108,
"name": "latitude",
"value": 52.37

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

63

6.3 Nodes

The node resource lists the nodes that the Gateway has registered.
If a node has a linked product the product field contains the resource identifier for that product.
Otherwise the product fieldMAY be null.
If a node has relevant version and/or serial number information these fields will contain the rele-
vant info. Otherwise, theyMAY be null.

6.3.1 URL patterns

/login/api/v1/nodes/
/login/api/v1/nodes/13/
/login/api/v1/gateways/2/nodes/
/login/api/v1/gateways/2/nodes/13/

6.3.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: gateway, node, product, protocol, serial, status, version, zwave_id.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

gateway_id Accepts a comma-separated list
node_id Accepts a comma-separated list
product_id Accepts a comma-separated list
product_null Accepts a boolean value: true or false
protocol_id Accepts a comma-separated list
status_id Accepts a comma-separated list
zwave_id Accepts a comma-separated list

6.3.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.3.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

gateway Parent gateway identifier
node Resource identifier
product Linked product identifier
protocol Node protocol
serial Serial of the node,MAY be null
status Z-Wave availability status
version Version of the node,MAY be null
zwave_id Z-Wave node id

The status of the node is indicated by the status field. This field has multiple possible values:
0: Node is available

64

1: Node has an unstable connection
2: Node has no connection

The protocol of the node is indicated by the protocolfield. This field hasmultiple possible values:
mygate: : This the the representative node for the Gateway

zwave: These nodes communicate using the Z-wave protocol
p1: These nodes communicate using the P1 or wM-Bus protocol

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that node doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those nodes will be returned
• If no nodes are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"gateway": 2,
"node": 13,
"product": 13,
"protocol": "zwave",
"serial": null,
"status": 2,
"version": null,
"zwave_id": 3

}

ResourceList = { "nodes": [
{

"gateway": 2,
"node": 13,
"product": 13,
"protocol": "zwave",
"serial": null,
"status": 2,
"version": null,
"zwave_id": 3

},
{

"gateway": 2,
"node": 14,
"product": 17,
"protocol": "zwave",
"serial": null,
"status": 2,
"version": null,
"zwave_id": 8

}
] }

6.3.2.2 POST

A POST request will create a new node. The node will automatically be linked to the API key. Any
query parameters not required for creation will be ignored. A POST request with an id will result
in a 404 NOT FOUND error.

65

Required fields zwave_id, gateway
Optional fields –

Creating a node is done by passing the resource as JSON data with POST. An example of the POST
body is

{
"zwave_id": 26,
"gateway": 2

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

66

6.4 Propertymappings

The propertymapping resource describes the way properties are linked to the physical parame-
ters of a node. This is based on the Z-Wave command class model. For more information on this
subject, please contact BeNext at support@benext.eu

6.4.1 URL patterns

/login/api/v1/propertymappings/
/login/api/v1/nodes/13/propertymappings/
/login/api/v1/gateways/2/propertymappings/
/login/api/v1/accounts/13/propertymappings

6.4.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: channel, commandclass, node, parameter, property, propertymapping.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

channel_id Accepts a comma-separated list
commandclass_id Accepts a comma-separated list
gateway_id Accepts a comma-separated list
node_id Accepts a comma-separated list
parameter_id Accepts a comma-separated list
product_id Accepts a comma-separated list
product_null Accepts a boolean value: true or false
property_id Accepts a comma-separated list
propertymapping_id Accepts a comma-separated list
protocol_id Accepts a comma-separated list
status_id Accepts a comma-separated list
zwave_id Accepts a comma-separated list

6.4.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.4.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

channel Z-Wave command class channel
commandclass Z-Wave command class ID
node Parent gateway identifier
parameter Z-Wave scale/option identifier
property Linked property identifier
propertymapping Resource identifier

If the URL is passed without id:

67

• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that propertymapping doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those propertymappings will be returned
• If no propertymappings are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"channel": 1,
"command_class": 50,
"node": 211,
"parameter": 0,
"property": 1100,
"propertymapping": 681

}

ResourceList = { "propertymappings": [
{

"channel": 1,
"command_class": 50,
"node": 211,
"parameter": 0,
"property": 1100,
"propertymapping": 681

},
{

"channel": 2,
"command_class": 50,
"node": 211,
"parameter": 0,
"property": 1101,
"propertymapping": 682

},
{

"channel": 3,
"command_class": 50,
"node": 211,
"parameter": 0,
"property": 1102,
"propertymapping": 683

}
] }

6.4.2.2 POST

A POST request will create a new propertymapping. The propertymapping will automatically be
linked to the API key. Any query parameters not required for creation will be ignored. A POST
request with an id will result in a 404 NOT FOUND error.

Required fields node, command_class, property
Optional fields channel, parameter

Creating a propertymapping is done by passing the resource as JSONdatawith POST. An example
of the POST body is

{

68

"node": 13,
"command_class": 50,
"property": 298

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

6.4.2.3 DELETE

ADELETE request is used to remove a propertymapping. If the resource does not exist a 404 NOT
FOUND is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an propertymapping idWILL deletemultiple
propertymappings. It is NOT recommend send a DELETE request without an propertymapping id
or filtering query parameters.

69

6.5 Installation

The installation resource is used to install or “unpair” physical Z-wave products onto virtual prod-
ucts.This resource is a wrapper for the installation procedure and doesn’t directly map to any
database resources.
The installation API can be used to start and stop the installation process and it will report back
feedback on the current state of the installation process. Possible type statuses are:

Type Meaning

install_start Install request successfully sent to Gateway
install_accepted Install request received by Gateway
install_searching Gateway ready for node info
install_found Gateway received node info
install_configuring Gateway is configuring node
install_conf_success Node configuration success
install_success Node is successfully installed on product
install_unknown_dev Installed node is an unknown product
install_wrong_dev Installed node did not match type of product
install_node_mapped Node was already mapped to a product
install_aborted Installation was aborted
install_rwu_fail Node went in sleep-mode to fast
install_conf_fail_w Node went unreachable during configuration (Wakeup)
install_conf_fail_l Node went unreachable during configuration (Listening)
install_internal Internal Gateway error
install_sec_hs_fail Secure handshake failure
install_no_sis No SIS available
install_busy Driver timeout
install_no_space No more space in Gateway
install_proto_fail Protocol failure
install_timeout Installation timed out

6.5.1 URL patterns

/login/api/v1/installation/

6.5.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: product, status, timestamp.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

begin ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

end ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

product_id Accepts a comma-separated list

70

6.5.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.5.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:
product Product for which the status code was sent
status Status identifier
timestamp Time at which the status code was received, in ISO format

If filter queryparams are passed:
• A ResourceList containing those installation will be returned
• If no installation are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "installation": [
{

"product": 41,
"status": "install_received",
"timestamp": "2015-03-30T10:23:05Z"

}
] }

6.5.2.2 POST

A POST request will create a new installation. The installation will automatically be linked to the
API key. Any query parameters not required for creation will be ignored. A POST request with an
id will result in a 404 NOT FOUND error.

Required fields product
Optional fields secure, timeout

Creating an installation is done by passing the resource as JSON data with POST. An example of
the POST body is

{
"product": 15

}

• If no Gateway is linked to the account for the requested product, a 400 Bad Request will be
returned.

• If the requested product does not exist, a 404 Not Found will be returned.
• If no connection could be setup to the Gateway or an error is received, a 502 Bad Gateway
error will be returned

• If the installation is requested as non-secured, but the product requires secure installation,
a 400 Bad Request will be returned

• If the resource is created successfully, a 202 ACCEPTED http codewill be returned. A GET to
the installation resource, with an optional product filter, can be performed to list the historic
and current installation state.

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

6.5.2.3 DELETE

A DELETE request is used to remove an installation. If the resource does not exist a 404 NOT
FOUND is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.

71

A DELETE with filtering query parameters or without an installation idWILL deletemultiple instal-
lation. It is NOT recommend send a DELETE request without an installation id or filtering query
parameters.

72

6.6 Deinstallation

The deinstallation resource is used to deinstall or “unpair” physical Z-Wave products from virtual
products. This resource is a wrapper for the deinstallation procedure and doesn’t directly map to
any database resources.
The deinstallation API can be used to start and stop the deinstallation process, and it will report
back feedback on the current state of the deinstallation process.
The product field is required, but it is possible to pass null as value to allow deinstallation of a
physical product which is unknown in the network. Possible type statuses are:

Type Meaning

deinst_start Deinstall request successfully sent to Gateway
deinst_accepted Deinstall request received by Gateway
deinst_searching Gateway ready for node info
deinst_found Gateway received node info
deinst_success Deinstallation successful
deinst_wrong_dev Wrong product was deinstalled
deinst_not_modified Node was removed from a different network or not installed
deinst_aborted Deinstallation was aborted
deinst_internal Internal Gateway error
deinst_busy Driver timeout
deinst_proto_fail Protocol failure
deinst_timeout Installation timed out

6.6.1 URL patterns

/login/api/v1/deinstallation/

6.6.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: product, status, timestamp.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

begin ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

end ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

product_id Accepts a comma-separated list

6.6.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.6.2.1 GET

A GET returns the relevant ResourceList. The resource contains the following fields:

73

product Product for which the status code was sent
status Status identifier
timestamp Time at which the status code was received, in ISO format

If filter queryparams are passed:
• A ResourceList containing those deinstallation will be returned
• If no deinstallation are relevant or selected, an empty list will be returned.

Output JSON

ResourceList = { "deinstallation": [
{

"product": null,
"status": "deinst_start",
"timestamp": "2015-08-18T08:42:50.315Z"

},
{

"product": null,
"status": "deinst_accepted",
"timestamp": "2015-08-18T08:42:50.534Z"

},
{

"product": null,
"status": "deinst_searching",
"timestamp": "2015-08-18T08:42:50.581Z"

},
{

"product": null,
"status": "deinst_found",
"timestamp": "2015-08-18T08:42:57.377Z"

},
{

"product": null,
"status": "deinst_not_modified",
"timestamp": "2015-08-18T08:42:59.377Z"

}
] }

6.6.2.2 POST

A POST request will create a new deinstallation. The deinstallation will automatically be linked to
the API key. Any query parameters not required for creation will be ignored. A POST request with
an id will result in a 404 NOT FOUND error.

Required fields product
Optional fields timeout

Creating a deinstallation is done by passing the resource as JSON data with POST. An example of
the POST body is

{
"product": 41

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

6.6.2.3 DELETE

A DELETE request is used to remove a deinstallation. If the resource does not exist a 404 NOT
FOUND is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.

74

A DELETE with filtering query parameters or without an deinstallation idWILL delete multiple de-
installation. It is NOT recommend send a DELETE request without an deinstallation id or filtering
query parameters.

75

6.7 Synchronize

The synchronize resource allows for the synchronization of rules for 1 ormore gateways. Synchro-
nization should always beperformedafter installing products to ensure theGateway is configured
correctly. Possible statuses for synchronization are:

Status Meaning

uninitialized The Gateway has never been synchronized
accepted The synchronization request has been accepted
sending Update is being sent to the Gateway
verifying Update is being verified by the Gateway
programming Update is being installed in the Gateway
success Update successful
error Update failed

6.7.1 URL patterns

/login/api/v1/synchronize/
/login/api/v1/gateways/1/synchronize/

6.7.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: gateway, status.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

gateway_id Accepts a comma-separated list

6.7.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.7.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
gateway Parent gateway identifier
status Synchronization status

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that sychronization doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those synchronize will be returned
• If no synchronize are relevant or selected, an empty list will be returned.

76

Output JSON

Resource = {
"gateway": 1,
"status": "success"

}

ResourceList = { "synchronize": [
{

"gateway": 1,
"status": "accepted"

}
] }

6.7.2.2 POST

A POST request will create a new sychronization. The sychronization will automatically be linked
to the API key. Any query parameters not required for creation will be ignored. A POST request
with an id will result in a 404 NOT FOUND error.

Required fields –
Optional fields –

This object has no required fields. Anything added to the POST body will be ignored. Creating a
sychronization is done by passing the resource as JSON data with POST.
If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

77

6.8 Pendingdatas

Pending data resources allows tracking of when and if values are sent to a specific product.

6.8.1 URL patterns

/login/api/v1/pendingdata/
/login/api/v1/pendingdata/16599/
/login/api/v1/gateways/65/pendingdata/
/login/api/v1/gateways/65/pendingdata/16599/

6.8.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: channel, command_class, eta, gateway, node, parameter, pendingdata, protocol,
status, timestamp, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

begin ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

command_class_id Accepts a comma-separated list
end ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

gateway_id Accepts a comma-separated list
node_id Accepts a comma-separated list
pendingdata_id Accepts a comma-separated list

6.8.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

6.8.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
channel Channel ID
command_class Command Class
eta Estimated time at which the value will be sent
gateway Parent account identifier
node Node ID
parameter Parameter
pendingdata Resource identifier
protocol Protocol identifier
status Status
timestamp Time at which the data was sent to the gateway
value The encoded value to be sent

If the URL is passed without id:
• The ResourceListwill be returned

78

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that pendingdata doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those pendingdatas will be returned
• If no pendingdatas are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"channel": 0,
"command_class": 132,
"eta": "2015-08-19T15:39:33Z",
"gateway": 65,
"node": 2,
"parameter": 0,
"pendingdata": 16599,
"protocol": "zwave",
"status": "wakeup",
"timestamp": "2015-08-19T15:39:33Z",
"value": "100E00000100000000000000"

}

ResourceList = { "pendingdatas": [
{

"channel": 0,
"command_class": 132,
"eta": "2015-08-19T15:39:33Z",
"gateway": 65,
"node": 2,
"parameter": 0,
"pendingdata": 16599,
"protocol": "zwave",
"status": "wakeup",
"timestamp": "2015-08-19T15:39:33Z",
"value": "100E00000100000000000000"

},
{

"channel": 0,
"command_class": 132,
"eta": "2016-11-16T10:24:46Z",
"gateway": 65,
"node": 5,
"parameter": 0,
"pendingdata": 17568,
"protocol": "zwave",
"status": "wakeup",
"timestamp": "2016-11-16T10:17:40Z",
"value": "201C00000100000000000000"

}
] }

6.8.2.2 POST

A POST request will create a new pendingdata. The pendingdata will automatically be linked to
the API key. Any query parameters not required for creation will be ignored. A POST request with
an id will result in a 404 NOT FOUND error.

Required fields gateway, protocol, node, command_class

79

Optional fields channel, parameter, value

Creating a pendingdata is done by passing the resource as JSON data with POST. An example of
the POST body is

{
"gateway": 65,
"protocol": "zwave",
"node": 5,
"command_class": 112

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

6.8.2.3 DELETE

A DELETE request is used to remove a pendingdata. If the resource does not exist a 404 NOT
FOUND is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
ADELETEwithfilteringquery parameters orwithout anpendingdata idWILLdeletemultiple pend-
ingdatas. It is NOT recommend send a DELETE request without an pendingdata id or filtering
query parameters.

80

7 | Energy asset reporting

7.1 Energyassetcategories

The energyassetcategory defines sets of properties which can be used to calculate information
about an energyasset. These categories have a fixed name and a title which will be translated
based on the provided Accept-Language or the configured language of the account. The list of
categories is provided below, along with an explanation of what this category defines.

Id Name Meaning Unit

6 usage Energy used for domestic appliances kWh
7 building_related_energy Energy used for heating, installation kWh
8 live_energy_generating Live power produced Watt
9 warm_water Domestic hot water m3
10 generating Energy produced by asset kWh
11 heat Energy used for central heating GJ
12 ventilation Energy used by ventilation kWh
13 heatpump Energy used by heatpump kWh
14 help Energy used by aux. installation kWh
15 roomtemp Measured room temperature °C
16 watertemp_ch Measured central heating flow temp. °C
17 co2 Measured CO2 ppm
18 gas Natural gas m3
19 electric_heating Energy used by electrical heating kWh
20 warm_water_heat Energy used for domestic hot water GJ
21 boiler Energy used by boiler kWh
22 live_energy_grid Live power im/exported to/form grid Watt
23 live_energy_building_related Live power used for heating, install. Watt
24 live_energy_usage Live power used for domestic appliances Watt
25 outsidetemp Outside temperature °C
26 grid_feedin Energy feed back into grid kWh
27 grid_usage Energy imported from grid kWh
28 setpoint_ch Central heating setpoint °C
29 setpoint_dhw Domestic hot water setpoint °C
30 setpoint_roomtemp Room temperature setpoint °C
31 watertemp_dhw Measured domestic hot water temperature °C
32 heat_volume Central heating water used m3
33 battery_charging Energy used to charge an accupack kWh
34 battery_usage Energy extracted from an accupack kWh
35 live_energy_battery Live energy charging/using from accu Watt
36 watertemp_return_ch Central heating return temperature °C
37 watertemp_return_dhw Domestic hot water return temperature °C
38 cooling Energy used for cooling GJ
39 cooling_volume Cooling water volume used m3
40 tap_water Cold domestic (tap) water volume m3
41 heatpump_booster Energy used by heatpump (booster) kWh
42 heatpump_ch Energy used by heatpump (central heating) kWh
43 heatpump_dhw Energy used by heatpump (domestic hot water) kWh
44 heatpump_cooling Energy used by heatpump (cooling) kWh
45 heat_kwh Energy used for heating (kWh) kWh
46 cooling_kwh Energy used for cooling (kWh) kWh

81

7.1.1 URL patterns

/login/api/v1/energyassetcategories/
/login/api/v1/energyassetcategories/7/

7.1.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: datatypes, displaycolor, energyassetcategory, name, order, thresholdtype,
title, valueconversion.

energyassetcategory_id Accepts a comma-separated list

7.1.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.1.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

datatypes List of Datatype resource identifiers to be used with this category
displaycolor Color to be used
energyassetcategory Resource identifier
name Category name
order Indicates the preferred ascending order of displaying the categories in graphs
thresholdtype Indicates whether the bundle should be maximum expected value (max) or
minimum required value (min)

title Category title
valueconversion Describes the conversions factors and corresponding suffixes

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that energyassetcategory doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those energyassetcategories will be returned
• If no energyassetcategories are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"datatypes": [

39
],
"displaycolor": "#888888",
"energyassetcategory": 7,
"name": "building_related_energy",
"thresholdtype": "min",
"title": "Building related",
"valueconversion": [

{

82

"factor": 0.0036,
"preferred": false,
"suffix": "GJ"

},
{

"factor": 1,
"preferred": true,
"suffix": "kWh"

},
{

"factor": 3.6,
"preferred": false,
"suffix": "MJ"

},
{

"factor": 0.001,
"preferred": false,
"suffix": "MWh"

}
]

}

ResourceList = { "energyassetcategories": [
{

"datatypes": [
39

],
"displaycolor": "#95b455",
"energyassetcategory": 6,
"name": "usage",
"thresholdtype": "min",
"title": "Household",
"valueconversion": [

{
"factor": 0.0036,
"preferred": false,
"suffix": "GJ"

},
{

"factor": 1,
"preferred": true,
"suffix": "kWh"

},
{

"factor": 3.6,
"preferred": false,
"suffix": "MJ"

},
{

"factor": 0.001,
"preferred": false,
"suffix": "MWh"

}
]

},
{

"datatypes": [
39

83

],
"displaycolor": "#888888",
"energyassetcategory": 7,
"name": "building_related_energy",
"thresholdtype": "min",
"title": "Building related",
"valueconversion": [

{
"factor": 0.0036,
"preferred": false,
"suffix": "GJ"

},
{

"factor": 1,
"preferred": true,
"suffix": "kWh"

},
{

"factor": 3.6,
"preferred": false,
"suffix": "MJ"

},
{

"factor": 0.001,
"preferred": false,
"suffix": "MWh"

}
]

},
{

"datatypes": [
62,
113

],
"displaycolor": "#9b98c8",
"energyassetcategory": 8,
"name": "live_energy_generating",
"thresholdtype": "min",
"title": "Live production energy",
"valueconversion": [

{
"factor": 1,
"preferred": true,
"suffix": "W"

},
{

"factor": 0.001,
"preferred": false,
"suffix": "kW"

},
{

"factor": 1e-06,
"preferred": false,
"suffix": "MW"

}
]

}
] }

84

7.2 Energyassets

7.2.1 URL patterns

/login/api/v1/energyassets/
/login/api/v1/energyassets/1/
/login/api/v1/accounts/5/energyassets/
/login/api/v1/accounts/5/energyassets/1/

7.2.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, bundles, energyasset, validated.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

7.2.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.2.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Parent account identifier
bundles Lists the various measurement categories, estimated by month
energyasset Resource identifier
validated Date on which energyasset was officially done, may be null if the asset is not fin-
ished yet

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that energyasset doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those energyassets will be returned
• If no energyassets are relevant or selected, an empty list will be returned.

Output JSON

85

Resource = {
"account": 5,
"bundles": {

"6": [
469,
402,
409,
349,
335,
314,
310,
318,
335,
375,
411,
467

]
},
"energyasset": 1,
"validated": null

}

ResourceList = { "energyassets": [
{

"account": 5,
"bundles": {

"10": [
92,
209,
368,
635,
709,
750,
713,
619,
407,
252,
131,
109

]
},
"energyasset": 1,
"validated": "2018-01-01T00:00:00Z"

}
] }

86

7.3 Energyassetproperties

7.3.1 URL patterns

/login/api/v1/energyassetproperties/
/login/api/v1/energyassetproperties/2/
/login/api/v1/energyassets/1/energyassetproperties/
/login/api/v1/energyassets/1/energyassetproperties/2/
/login/api/v1/accounts/5/energyassetproperties/
/login/api/v1/accounts/5/energyassetproperties/2/
/login/api/v1/accounts/5/energyassets/1/energyassetproperties/
/login/api/v1/accounts/5/energyassets/1/energyassetproperties/2/

7.3.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: energyasset, energyassetcategory, energyassetproperty, property.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
energyassetcategory_id Accepts a comma-separated list
energyassetproperty_id Accepts a comma-separated list
validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

7.3.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.3.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

energyasset Parent energyasset identifier
energyassetcategory Parent energyassetcategory identifier
energyassetproperty Resource identifier
property Parent property identifier

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that energyassetproperty doesn’t exist

If filter queryparams are passed:

87

• A ResourceList containing those energyassetproperties will be returned
• If no energyassetproperties are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"energyasset": 1,
"energyassetcategory": 7,
"energyassetproperty": 2,
"property": 922

}

ResourceList = { "energyassetproperties": [
{

"energyasset": 1,
"energyassetcategory": 6,
"energyassetproperty": 1,
"property": 918

},
{

"energyasset": 1,
"energyassetcategory": 9,
"energyassetproperty": 2,
"property": 919

}
] }

7.3.2.2 POST

A POST request will create a new energyassetproperty. The energyassetproperty will automati-
cally be linked to the API key. Any query parameters not required for creation will be ignored. A
POST request with an id will result in a 404 NOT FOUND error.

Required fields energyasset, energyassetcategory, property
Optional fields –

Creating an energyassetproperty is done by passing the resource as JSON data with POST. An
example of the POST body is

{
"property": 100,
"energyasset": "1",
"energyassetcategory": 10

}

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

7.3.2.3 DELETE

A DELETE request is used to remove an energyassetproperty. If the resource does not exist a 404
NOT FOUND is returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an energyassetproperty idWILL delete mul-
tiple energyassetproperties. It is NOT recommend send a DELETE request without an energyas-
setproperty id or filtering query parameters.

88

7.4 Energyassetbundles

Theenergyassetbundles showhowmuchenergy is consumedper energyassetcategory in the cho-
sen period. The bundles returned represent the bundles found in energyassets

7.4.1 URL patterns

/login/api/v1/energyassetbundles/<aggregate>/<calendardate>/<calendardate>/
/login/api/v1/energyassetbundles/7/<aggregate>/<calendardate>/<calendardate>/
/login/api/v1/energyassets/2/energyassetbundles/<aggregate>/<calendardate>/

<calendardate>/

/login/api/v1/energyassets/2/energyassetbundles/7/<aggregate>/<calendardate>/
<calendardate>/

/login/api/v1/accounts/3/energyassetbundles/<aggregate>/<calendardate>/
<calendardate>/

/login/api/v1/accounts/3/energyassetbundles/7/<aggregate>/<calendardate>/
<calendardate>/

/login/api/v1/accounts/3/energyassets/2/energyassetbundles/<aggregate>/
<calendardate>/<calendardate>/

/login/api/v1/accounts/3/energyassets/2/energyassetbundles/7/<aggregate>/
<calendardate>/<calendardate>/

The <aggregate> part of the URL indicates the resolution at which to aggregate. Possible options
are: minute, hour, day, month, year.
The <calendardate> part of the URL consists of an ISO6801 extended timestamp. The following
formats are possible: YYYY-MM-dd, YYYY-MM, YYYY.
Thefirst<calendardate> represents the start of thequery (inclusive), the second<calendardate>
represents the end of the query (exclusive).

7.4.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: bundle, energyasset, energyassetcategory, expectedvalue, timestamp, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
energyassetbundle_id Accepts a comma-separated list
energyassetcategory_id Accepts a comma-separated list
ignore_bundles Accepts a boolean value: true or false
validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

89

7.4.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.4.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
bundle The bundle value
energyasset Parent energyasset identifier
energyassetcategory Energyassetcategory identifier
expectedvalue The expected energy consumption
timestamp Timestamp for which the bundle was calculated, in ISO format
value The aggregated value

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that energyassetbundle doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those energyassetbundles will be returned
• If no energyassetbundles are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"bundle": 3000.0,
"energyasset": 2,
"energyassetcategory": 7,
"expectedvalue": 1896.9,
"timestamp": "2015",
"value": 1581.5

}

ResourceList = { "energyassetbundles": [
{

"bundle": 190.4,
"energyasset": 2,
"energyassetcategory": 7,
"expectedvalue": 134.9,
"timestamp": "2015-03",
"value": 156.5

},
{

"bundle": 120.0,
"energyasset": 2,
"energyassetcategory": 10,
"expectedvalue": 34.1,
"timestamp": "2015-03",
"value": 49.8

}
] }

90

7.5 Energyassetbundletotals

The energyassetbundletotals are the aggregated bundle values for the given period. The bundles
returned represent the bundles found in energyassets

7.5.1 URL patterns

/login/api/v1/energyassetbundles/total/<calendardate>/<calendardate>/
/login/api/v1/energyassetbundles/7/total/<calendardate>/<calendardate>/
/login/api/v1/energyassets/2/energyassetbundles/total/<calendardate>/

<calendardate>/

/login/api/v1/energyassets/2/energyassetbundles/7/total/<calendardate>/
<calendardate>/

/login/api/v1/accounts/1/energyassetbundles/total/<calendardate>/<calendardate>/
/login/api/v1/accounts/1/energyassetbundles/7/total/<calendardate>/

<calendardate>/

/login/api/v1/accounts/1/energyassets/2/energyassetbundles/total/<calendardate>/
<calendardate>/

/login/api/v1/accounts/1/energyassets/2/energyassetbundles/7/total/
<calendardate>/<calendardate>/

Note that this resource is similar to the normal bundle resource.
The main difference between the two is the output format, which for bundletotals does NOT
include a timestamp.
The <calendardate> part of the URL consists of an ISO6801 extended timestamp. The following
formats are possible: YYYY-MM-dd, YYYY-MM, YYYY.
Thefirst<calendardate> represents the start of thequery (inclusive), the second<calendardate>
represents the end of the query (exclusive).

7.5.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: bundle, energyasset, energyassetcategory, expectedvalue, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
energyassetbundletotal_id Accepts a comma-separated list
energyassetcategory_id Accepts a comma-separated list
ignore_bundles Accepts a boolean value: true or false
validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

91

7.5.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.5.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

bundle The bundle value
energyasset Parent energyasset identifier
energyassetcategory Energyassetcategory identifier
expectedvalue The expected energy consumption for the given period
value The aggregated value

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that energyassetbundletotal doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those energyassetbundletotals will be returned
• If no energyassetbundletotals are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"bundle": 3000.0,
"energyasset": 2,
"energyassetcategory": 7,
"expectedvalue": 1896.9,
"timestamp": "2015",
"value": 1581.5

}

ResourceList = { "energyassetbundletotals": [
{

"bundle": 190.4,
"energyasset": 2,
"energyassetcategory": 7,
"expectedvalue": 134.9,
"timestamp": "2015-03",
"value": 156.5

},
{

"bundle": 120.0,
"energyasset": 2,
"energyassetcategory": 10,
"expectedvalue": 34.1,
"timestamp": "2015-03",
"value": 49.8

}
] }

92

7.6 Energyassetaggregates

Theenergyassetaggregates resource lists themost recent value for eachenergyassetcategory.Where
value is an aggregation of the energyassetproperties per energyassetcategory.

Id Name Aggregate Unit

6 usage custom kWh
7 building_related_energy sum kWh
8 live_energy_generating sum Watt
9 warm_water sum m3
10 generating sum kWh
11 heat sum GJ
12 ventilation sum kWh
13 heatpump sum kWh
14 help sum kWh
15 roomtemp average °C
16 watertemp_ch average °C
17 co2 average ppm
18 gas sum m3
19 electric_heating sum kWh
20 warm_water_heat sum GJ
21 boiler sum kWh
22 live_energy_grid sum Watt
23 live_energy_building_related sum Watt
24 live_energy_usage custom Watt
25 outsidetemp average °C
26 grid_feedin sum kWh
27 grid_usage sum kWh
28 setpoint_ch average °C
29 setpoint_dhw average °C
30 setpoint_roomtemp average °C
31 watertemp_dhw average °C
32 heat_volume sum m3
33 battery_charging sum kWh
34 battery_usage sum kWh
35 live_energy_battery sum Watt
36 watertemp_return_ch average °C
37 watertemp_return_dhw average °C
38 cooling sum GJ
39 cooling_volume sum m3
40 tap_water sum m3
41 heatpump_booster sum kWh
42 heatpump_ch sum kWh
43 heatpump_dhw sum kWh
44 heatpump_cooling sum kWh
45 heat_kwh sum kWh
46 cooling_kwh sum kWh

7.6.0.1 Custom aggregation categories:

Id Aggregation

6 usage is calculated:
grid_usage + generating - grid_feedin - building_related_energy = usage

24 live_energy_usage is calculated:
live_energy_grid + live_energy_generating - live_energy_building_related

93

Id Aggregation

= live_energy_usage

7.6.1 URL patterns

/login/api/v1/energyassetaggregates/
/login/api/v1/energyassetaggregates/7/
/login/api/v1/energyassets/1/energyassetaggregates/
/login/api/v1/energyassets/1/energyassetaggregates/7/
/login/api/v1/accounts/5/energyassetaggregates/
/login/api/v1/accounts/5/energyassetaggregates/7/
/login/api/v1/accounts/5/energyassets/1/energyassetaggregates/
/login/api/v1/accounts/5/energyassets/1/energyassetaggregates/7/

7.6.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: energyasset, energyassetcategory, value.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
energyassetaggregate_id Accepts a comma-separated list
energyassetcategory_id Accepts a comma-separated list
filter_unused_categories Accepts a boolean value: true or false
updated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

7.6.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.6.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
energyasset Energyasset identifier
energyassetcategory Energyassetcategory identifier
value Aggregated energy asset value

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.

94

• A 404 NOT FOUND will be returned if that energyassetaggregate doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those energyassetaggregates will be returned
• If no energyassetaggregates are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"energyasset": 2,
"energyassetcategory": 7,
"value": 4554.0

}

ResourceList = { "energyassetaggregates": [
{

"energyasset": 2,
"energyassetcategory": 7,
"value": 4554.0

},
{

"energyasset": 2,
"energyassetcategory": 8,
"value": 223.34

}
] }

95

7.7 Heatpumpcops

The Coefficient Of Performance (COP) of a heatpump is the ratio of useful heating or cooling
provided to the work required to generate either heating or cooling. This endpoint returns a col-
lection of the heating and/or cooling used,heatpumppower usage andCOPbasedon the selected
time range and aggregate.

7.7.1 Beta endpoint

This endpoint is still in it’s Beta stage. This means that the results from this endpointmight not be
as expected. All aspects might be subject to change in the future as well. To have beta features
enabled for you, please contact BeNext.

7.7.2 URL patterns

/login/api/v1/heatpumpcop/<aggregate>/<calendardate>/<calendardate>/
/login/api/v1/energyassets/2/heatpumpcop/<aggregate>/<calendardate>/

<calendardate>/

/login/api/v1/accounts/3/heatpumpcop/<aggregate>/<calendardate>/<calendardate>/
/login/api/v1/accounts/3/energyassets/2/heatpumpcop/<aggregate>/<calendardate>/

<calendardate>/

The <aggregate> part of the URL indicates the resolution at which to aggregate. Possible options
are: minute, hour, day, month, year.
The <calendardate> part of the URL consists of an ISO6801 extended timestamp. The following
formats are possible: YYYY-MM-dd, YYYY-MM, YYYY.
Thefirst<calendardate> represents the start of thequery (inclusive), the second<calendardate>
represents the end of the query (exclusive).

7.7.2.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: cooling, cop, energyasset, heat, heatpump, timestamp, unit, warm_water_heat.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
heatpumpcop_id Accepts a comma-separated list
validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

7.7.3 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

96

7.7.3.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
cooling Energy used for cooling
cop The calculated COP value
energyasset Parent energyasset identifier
heat Energy used for central heating
heatpump Energy used by heatpump
timestamp Timestamp for which the COP was calculated, in ISO format
unit The energy unit of the intermediate results
warm_water_heat Energy used for domestic warm water

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that heatpumpcop doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those heatpumpcops will be returned
• If no heatpumpcops are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"cooling": 0,
"cop": 7.5,
"energyasset": 2,
"heat": 3.4,
"heatpump": 1.2,
"timestamp": "2015",
"unit": "kWh",
"warm_water_heat": 5.6

}

ResourceList = { "heatpumpcops": [
{

"cooling": 0,
"cop": 7.5,
"energyasset": 2,
"heat": 3.4,
"heatpump": 1.2,
"timestamp": "2015-03",
"unit": "kWh",
"warm_water_heat": 5.6

},
{

"cooling": 0,
"cop": 7.5,
"energyasset": 2,
"heat": 3.4,
"heatpump": 1.2,
"timestamp": "2015-04",
"unit": "kWh",
"warm_water_heat": 5.6

}
] }

97

7.8 Heatpumpcoptotals

The Coefficient Of Performance (COP) of the heatpump is a ratio of useful heating or cooling
provided to the work required to generate said heating or cooling. This endpoint returns the
aggregates of the heating and/or cooling used,heatpump power usage and COP based on the
selected time range.

7.8.1 Beta endpoint

This endpoint is still in it’s Beta stage. This means that the results from this endpointmight not be
as expected. All aspects might be subject to change in the future as well. To have beta features
enabled for you, please contact BeNext.

7.8.2 URL patterns

/login/api/v1/heatpumpcop/total/<calendardate>/<calendardate>/
/login/api/v1/energyassets/2/heatpumpcop/total/<calendardate>/<calendardate>/
/login/api/v1/accounts/3/heatpumpcop/total/<calendardate>/<calendardate>/
/login/api/v1/accounts/3/energyassets/2/heatpumpcop/total/<calendardate>/

<calendardate>/

The <calendardate> part of the URL consists of an ISO6801 extended timestamp. The following
formats are possible: YYYY-MM-dd, YYYY-MM, YYYY.
Thefirst<calendardate> represents the start of thequery (inclusive), the second<calendardate>
represents the end of the query (exclusive).

7.8.2.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: cooling, cop, energyasset, heat, heatpump, unit, warm_water_heat.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

energyasset_id Accepts a comma-separated list
heatpumpcoptotal_id Accepts a comma-separated list
validated_after ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_before ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

validated_null Accepts a boolean value: true or false

7.8.3 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

7.8.3.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
cooling Energy used for cooling

98

cop The calculated COP value
energyasset Parent energyasset identifier
heat Energy used for central heating
heatpump Energy used by heatpump
unit The energy unit of the intermediate results
warm_water_heat Energy used for domestic warm water

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that heatpumpcoptotal doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those heatpumpcoptotals will be returned
• If no heatpumpcoptotals are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"cooling": 0,
"cop": 7.5,
"energyasset": 2,
"heat": 3.4,
"heatpump": 1.2,
"unit": "kWh",
"warm_water_heat": 5.6

}

ResourceList = { "heatpumpcoptotals": [
{

"cooling": 0,
"cop": 7.5,
"energyasset": 2,
"heat": 3.4,
"heatpump": 1.2,
"unit": "kWh",
"warm_water_heat": 5.6

},
{

"cooling": 0,
"cop": 7.5,
"energyasset": 3,
"heat": 3.4,
"heatpump": 1.2,
"unit": "kWh",
"warm_water_heat": 5.6

}
] }

99

8 | Problemdetectionand resolution

8.1 Failuretypes

Provides extra information about the Failures which occurred and what type of resource they are
linked to.

8.1.1 URL patterns

/login/api/v1/failuretypes/
/login/api/v1/failuretypes/product/gateway/unavailable/

8.1.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: failuretype, impact, resourcetype.

failuretype_id Accepts a comma-separated list
failuretype_name Lookups are NOT case sensitive. Complex lookups are possible using the
% and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

8.1.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

8.1.2.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
failuretype Resource identifier
impact Impact
resourcetype Resource type

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that failuretype doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those failuretypes will be returned
• If no failuretypes are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"failuretype": "product/gateway/unavailable",
"resource_type": "gateway"

}

ResourceList = { "failuretypes": [
{

100

"failuretype": "product/gateway/unavailable",
"resource_type": "gateway"

},
{

"failuretype": "product/general/unavailable",
"resource_type": "peripheral"

}
] }

101

8.2 Failures

Provides a list of all failures associated with an account. Failures will be automatically be removed
after 6months. To get an overview of the latest status of all products use the latest=true query
parameter.

8.2.1 URL patterns

/login/api/v1/failures/
/login/api/v1/failures/130/
/login/api/v1/accounts/1/failures/
/login/api/v1/accounts/1/failures/130/

8.2.1.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, failure, failuretype, resource, status, timestamp.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

begin ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

end ISO-8601 timestamp. The following formats arepossible: YYYY-MM-DD,YYYY-MM-DDTHH:mm:ss,
YYYY-MM-DDTHH:mm:ss(Z|+-13:00).

failure_id Accepts a comma-separated list
failuretype_name Lookups are NOT case sensitive. Complex lookups are possible using the
% and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

impact Accepts a comma-separated list
latest Accepts a boolean value: true or false
resource_id Accepts a comma-separated list
status_str Accepts a comma-separated list

8.2.2 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

8.2.2.1 GET

A GET returns the relevant Resource or ResourceList. This resources allows for pagination using
the Rangeheader. See the introduction chapter formore information on the implementation. The
resource contains the following fields:

account Parent account identifier
failure Resource identifier
failuretype Parent failuretype identifier
resource Resource type identifier pk
status Status of failure, options are: no_failure, failed, accepted
timestamp Timestamp for failure ISO format

If the URL is passed without id:

102

• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that failure doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those failures will be returned
• If no failures are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"account": 1,
"failure": 128,
"failuretype": "product/gateway/unavailable",
"resource": 1,
"status": "no_failure",
"timestamp": "2018-05-07T00:00:00Z"

}

ResourceList = { "failures": [
{

"account": 1,
"failure": 128,
"failuretype": "product/gateway/unavailable",
"resource": 1,
"status": "no_failure",
"timestamp": "2018-05-07T00:00:00Z"

},
{

"account": 1,
"failure": 130,
"failuretype": "product/general/unavailable",
"resource": 5,
"status": "failed",
"timestamp": "2018-05-14T07:18:13.988Z"

}
] }

8.2.2.2 POST

APOST requestwill create anew failure. The failurewill automatically be linked to theAPI key. Any
query parameters not required for creation will be ignored. A POST request with an id will result
in a 404 NOT FOUND error. This resource allows the bulk creation. To create multiple resources
in 1 request, send all resources in a list. Read the introduction chapter for more information on
this feature.

Required fields failuretype, account, status, timestamp
Optional fields resource

Creating a failure is done by passing the resource as JSON data with POST. An example of the
POST body is

{
"failuretype": "product/gateway/unavailable",
"account": 1,
"status": "failed",
"timestamp": "2018-05-14T07:18:13.988Z"

}

103

If the resource is created successfully a 201 CREATED http code will be returned, along with the
id of the created resource. A Location header containing a canonical url to the created resource
will also be passed.

8.2.2.3 PUT

A PUT request is used to update fields of a failure. If a field is passed that cannot be updated, a
400 Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields failuretype, account, status, resource

Updating a failure is done by passing the values to be updated as JSON data with a PUT. An exam-
ple of the PUT body is

{
"failuretype": "product/general/unavailable",
"account": 5,
"status": "no_failure",
"resource": null

}

A PUT request with filtering query parameters or without an failure idWILL update multiple fail-
ures. It is NOT recommend to send a PUT request without an failure id or filtering query parame-
ters.
A successful PUT request will return a 200 OK http code with an empty response body.

8.2.2.4 DELETE

A DELETE request is used to remove a failure. If the resource does not exist a 404 NOT FOUND is
returned. If the resource is successfully deleted a 204 NO CONTENT is returned.
A DELETE with filtering query parameters or without an failure idWILL delete multiple failures. It
is NOT recommend send a DELETE request without an failure id or filtering query parameters.

104

9 | User interface

9.1 Tiles

Tiles defines a set of UI elements defined in the Tile’s views. There are three kind of views, static,
property and actionable. Styles normal, warning, and critical are actionable, whichmeans a put
call can activate them. static is used to show static data using view_data. property indicates to
show a specific property.

view info

view int
order int
style string, describes the style of the view
property int, null unless style is property
view_data dict, null if style is static or property

How the UI element should look and what to display is defined by the combination of style and
view_data.

view_data info

name string, either name or icon is not null
icon string, either name or icon is not null
value string, can be null
alert_message string, can be null

icon references an icon frommaterialdesignicons.com (for exampleMdiIcons.alarmLightOffOutline).

9.1.1 Beta endpoint

This endpoint is still in it’s Beta stage. This means that the results from this endpointmight not be
as expected. All aspects might be subject to change in the future as well. To have beta features
enabled for you, please contact BeNext.

9.1.2 URL patterns

/login/api/v1/tiles/
/login/api/v1/tiles/30/
/login/api/v1/tiles/30/1
/login/api/v1/accounts/6/tiles/
/login/api/v1/accounts/6/tiles/30/

9.1.2.1 Query parameters

Query parameters are extra resource list filters that can be passed with a GET request. These
parameters are always optional. If after filtering no resources remain, an empty resource list will
be returned.

fields Comma-separated list, if this parameter is used only the selected fields will be show.
Options are: account, name, tile, views.

account_id Accepts a comma-separated list
account_name Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

105

https://materialdesignicons.com/

account_search Lookups are NOT case sensitive. Complex lookups are possible using the %
and _ symbol. The %-symbol match any character for any amount. The _-symbol matches
any character once. This syntax matches normal LIKE lookups in SQL.

group Lookups are NOT case sensitive. Complex lookups are possible using the % and _ sym-
bol. The %-symbolmatch any character for any amount. The _-symbolmatches any character
once. This syntax matches normal LIKE lookups in SQL.

tile_id Accepts a comma-separated list

9.1.3 Usable HTTP methods

The following section describes what HTTP methods are available for this resource. It also de-
scribes possible side-effect and return codes for API-calls.

9.1.3.1 GET

AGET returns the relevant Resource or ResourceList. The resource contains the following fields:
account Parent account identifier
name Tile name
tile Resource identifier
views The views for this tile

If the URL is passed without id:
• The ResourceListwill be returned

If an id is passed in the URL:
• A Resourcewill be returned.
• A 404 NOT FOUND will be returned if that tile doesn’t exist

If filter queryparams are passed:
• A ResourceList containing those tiles will be returned
• If no tiles are relevant or selected, an empty list will be returned.

Output JSON

Resource = {
"account": 6,
"group": "ventilation",
"name": "Ventilation",
"tile": 29,
"views": [

{
"order": 1,
"property": null,
"style": "normal",
"view": 1,
"view_data": {

"alert_message": "Alert Demo",
"icon": "MdiIcons.fan",
"name": null,
"value": null

}
}

]
}

ResourceList = { "tiles": [
{

"account": 6,
"group": "ventilation",

106

"name": "Ventilation",
"tile": 29,
"views": [

{
"order": 1,
"property": null,
"style": "normal",
"view": 1,
"view_data": {

"alert_message": "Alert Demo",
"icon": "MdiIcons.fan",
"name": null,
"value": null

}
}

]
},
{

"account": 6,
"group": "ventilation",
"name": "Ventilation",
"tile": 30,
"views": [

{
"order": 1,
"property": null,
"style": "static",
"view": 2,
"view_data": {

"alert_message": "Are you sure you want to reset the filter?",
"icon": "MdiIcons.alert",
"name": "Reset Filter",
"value": null

}
},
{

"order": 2,
"property": 3565,
"style": "property",
"view": 3,
"view_data": null

}
]

}
] }

9.1.3.2 PUT

A PUT request is used to update fields of a tile. If a field is passed that cannot be updated, a 400
Bad Request error will be returned. If a field is passed that is not recognized it will be ignored.

Updatable fields trigger

Updating a tile is done by passing the values to be updated as JSON data with a PUT. An example
of the PUT body is

{
"trigger": true

}

trigger: truewill activate the scenes associated with the tile_view.

107

A PUT request with filtering query parameters or without an tile idWILL update multiple tiles. It
is NOT recommend to send a PUT request without an tile id or filtering query parameters.
A successful PUT request will return a 200 OK http code with an empty response body.

108

10 | Changelog

10.1 Release 1.59

• Added Bearer based authentication method
• Clarified the base domain that has to be used in the API introduction
• Clarified the HTTP response codes that can be returned on any error in the API introduction
• Added reseller field to the account resource

10.2 Release 1.57 — 2024-11-27

• Addedanoptional queryparameterconverted_value for thehistoryentriesandproperties
endpoints

• Expanded fetchable maximum date range to 32 days for the historyentries endpoint

10.3 Release 1.56 — 2024-07-31

• Clarified status field for the Gateway resource
• Fixed a few spelling errors

10.4 Release 1.55 — 2024-04-24

• Expanded support for the climatecontrollers endpoint and clarified the documentation

10.5 Release 1.54 — 2023-12-13

• Removed Range header support from heatpumpcop and heatpumpcoptotals endpoints
• heatpumpcoptotals endpoints had incorrect URL examples
• Fixed a few spelling errors

10.6 Release 1.53 — 2023-09-13

• Clarified 422 status code for historyentries endpoint

10.7 Release 1.51 — 2023-04-19

• Added a new API call Tiles

10.8 Release 1.50 — 2023-02-08

• Added new failure types for the detection of extreme energy peaks in energy bundles
• Added limitation for a request of TOTP devices with basic Authentication when the user
already has a TOTP device

• Removed totptoken header dependency for creation of an Mfa-Token

109

10.9 Release 1.49.3 — 2023-01-24

• Removed DELETE option from Accounts, Gateway and Product endpoints

10.10 Release 1.49 — 2022-12-07

• Added new experimental Multi Factor Authentication endpoints
• Added new energyassetcategories: heat_kwh and cooling_kwh
• Added datatypes to the energyassetcategory resource
• Added an optional query parameter ignore_bundles to return data for all energyassetprop-
erties instead of only for bundles in energyassetbundles and energyassetbundletotals

• historyentries now allows 31 days of data to be fetched

10.11 Release 1.48 — 2022-08-18

• Added new /login/api/v1/accounts/1/gateways pattern for gateways
• Addednew/login/api/v1/accounts/1/propertymappingspattern forpropertymappings
• Updated valueconversion factor in energyassetcategories to make values suitable for
multiplication only

10.12 Release 1.47.3 — 2022-07-18

• Added a way to filter unused energycategories in energyassetaggregates

10.13 Release 1.47 – 2022-06-14

• Addednewenergyassetcategories: tap_water, heatpump_booster, heatpump_ch, heatpump_dhw
and heatpump_cooling.

• Updatedaggregateandcalenderdateexplanations for theenergyassetbundle, energyassetbundletotal,
heatpumpcop and heatpumpcoptotal resources.

• Various spelling and grammar corrections throughout the documentation.

10.14 Release 1.45.3 – 2022-02-23

• organizations and projects resources now accept reverse account queries.
• Corrected reference to C02 (with a zero) to the correct CO2.

10.15 Release 1.44 – 2021-07-07

• Added heatpumpcop and heatpumpcoptotal endpoint documentation (beta)

10.16 Release 1.43 – 2021-04-07

• Various spelling and grammar corrections throughout the documentation.
• Incorrectly named expectedvalue attribute in energyassetbundle resource.
• Added timezone and aggregates query parameters for the historyentry resource.
• Updated all functions that support the range header and those that do not.
• Clarified the use of trigger for the scene resource.
• Added boolean node_null and energy_data query parameters for the product resource.
• Show changelog as most recent changes on top.

110

10.17 Release 1.42 – 2020-11-10

• Various spelling and grammar corrections throughout the documentation.
• Products with THERMOSTAT_OPERATING_STATE now recognised as having a heating at-
tribute in climatecontroller resource.

• Added climatecontroller attribute to producttype.
• All URLS to energyassetbundleswere incorrectly referencing bundles.

10.18 Release 1.40 – 2020-04-08

• Various spelling corrections throughout the documentation.
• 3.7 - Added climatecontroller resource.

10.19 Release 1.39 – 2020-02-07

• 3.4 - Addedaquery parameter energydata tofilter propertieswhich canhave energyentries.
• 6.1 - Added multiple attributes related uniformly to displaying energyassetcategories.

10.20 Release 1.38 – 2019-10-10

• 6.4 - Added bundle resource.
• 6.5 - Added bundletotal resource.
• 6.6 - Added energyassetaggregate resource.

10.21 Release 1.37 – 2019-07-17

• 1.4 - Documented Accept-Language support.
• 1.8 - Added an API-structure section to the introduction chapter.
• 2.1 - Added possibility to changed password of an account.
• 4.2 – 4.4 - Updated energyentry and historyentry chapters to reflect correct usage of
timestamp.

• 5.3 - Added a zwave_id filter to the node resource.
• 6.1 - Additional explanation of energyassetcategories.

111

	Basic API information
	API Terms of service
	URL construction
	Authentication
	Accessing and manipulating resources
	Common & custom request headers
	Cross-site requests
	Errors
	Timestamps and timezone information
	API structure

	Multi factor authentication
	Introduction to MFA
	Totpdevices
	Mfaauthenticate

	Account information
	Accounts
	Addresses
	Projects
	Organizations
	Lifestyles
	Scenes
	Files

	General product information
	Producttypes
	Products
	Datatypes
	Properties
	Mainmeters
	Tariffs
	Climatecontrollers

	Sensor data & availability
	Availabilities
	Historyentries
	Energyentries
	Energyentrytotals

	Device linking & configuration
	Gateways
	Settings
	Nodes
	Propertymappings
	Installation
	Deinstallation
	Synchronize
	Pendingdatas

	Energy asset reporting
	Energyassetcategories
	Energyassets
	Energyassetproperties
	Energyassetbundles
	Energyassetbundletotals
	Energyassetaggregates
	Heatpumpcops
	Heatpumpcoptotals

	Problem detection and resolution
	Failuretypes
	Failures

	User interface
	Tiles

	Changelog
	Release 1.59
	Release 1.57 — 2024-11-27
	Release 1.56 — 2024-07-31
	Release 1.55 — 2024-04-24
	Release 1.54 — 2023-12-13
	Release 1.53 — 2023-09-13
	Release 1.51 — 2023-04-19
	Release 1.50 — 2023-02-08
	Release 1.49.3 — 2023-01-24
	Release 1.49 — 2022-12-07
	Release 1.48 — 2022-08-18
	Release 1.47.3 — 2022-07-18
	Release 1.47 – 2022-06-14
	Release 1.45.3 – 2022-02-23
	Release 1.44 – 2021-07-07
	Release 1.43 – 2021-04-07
	Release 1.42 – 2020-11-10
	Release 1.40 – 2020-04-08
	Release 1.39 – 2020-02-07
	Release 1.38 – 2019-10-10
	Release 1.37 – 2019-07-17

